๐ nanoLLaVA - Sub 1B Vision-Language Model
nanoLLaVA is a "small but mighty" 1B vision-language model designed to run efficiently on edge devices.
IMPORTANT: nanoLLaVA-1.5 is out with a much better performance. Please find it here.
๐ Quick Start
You can use nanoLLaVA with transformers
using the following steps. First, install the necessary libraries:
pip install -U transformers accelerate flash_attn
Then, use the following Python script to interact with the model:
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
torch.set_default_device('cuda')
model = AutoModelForCausalLM.from_pretrained(
'qnguyen3/nanoLLaVA',
torch_dtype=torch.float16,
device_map='auto',
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
'qnguyen3/nanoLLaVA',
trust_remote_code=True)
prompt = 'Describe this image in detail'
messages = [
{"role": "user", "content": f'<image>\n{prompt}'}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
print(text)
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
image = Image.open('/path/to/image.png')
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
output_ids = model.generate(
input_ids,
images=image_tensor,
max_new_tokens=2048,
use_cache=True)[0]
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
โจ Features
Model |
VQA v2 |
TextVQA |
ScienceQA |
POPE |
MMMU (Test) |
MMMU (Eval) |
GQA |
MM-VET |
Score |
70.84 |
46.71 |
58.97 |
84.1 |
28.6 |
30.4 |
54.79 |
23.9 |
๐ฆ Installation
pip install -U transformers accelerate flash_attn
๐ป Usage Examples
Basic Usage
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
torch.set_default_device('cuda')
model = AutoModelForCausalLM.from_pretrained(
'qnguyen3/nanoLLaVA',
torch_dtype=torch.float16,
device_map='auto',
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
'qnguyen3/nanoLLaVA',
trust_remote_code=True)
prompt = 'Describe this image in detail'
messages = [
{"role": "user", "content": f'<image>\n{prompt}'}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
print(text)
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
image = Image.open('/path/to/image.png')
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
output_ids = model.generate(
input_ids,
images=image_tensor,
max_new_tokens=2048,
use_cache=True)[0]
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
๐ Documentation
Prompt Format
The model follow the ChatML standard, however, without \n
at the end of <|im_end|>
:
<|im_start|>system
Answer the question<|im_end|><|im_start|>user
<image>
What is the picture about?<|im_end|><|im_start|>assistant
Image |
Example |
 |
What is the text saying? "Small but mighty". How does the text correlate to the context of the image? The text seems to be a playful or humorous representation of a small but mighty figure, possibly a mouse or a mouse toy, holding a weightlifting bar. |
๐ License
This project is licensed under the apache-2.0 license.
Model is trained using a modified version from Bunny
Training Data
Training Data will be released later as I am still writing a paper on this. Expect the final final to be much more powerful than the current one.
Finetuning Code
Coming Soon!!!