đ Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic
This model is optimized for fast response, low latency, and various use - cases, with significant memory and compute improvements through FP8 quantization.
đ Quick Start
This model can be deployed efficiently using the vLLM backend. Here is a simple example:
from vllm import LLM, SamplingParams
from transformers import AutoProcessor
model_id = "RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
processor = AutoProcessor.from_pretrained(model_id)
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
prompts = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM also supports OpenAI - compatible serving. See the documentation for more details.
⨠Features
Model Overview
- Model Architecture: Mistral3ForConditionalGeneration
- Input: Text / Image
- Output: Text
- Model Optimizations:
- Activation quantization: FP8
- Weight quantization: FP8
- Intended Use Cases: It is ideal for:
- Fast - response conversational agents.
- Low - latency function calling.
- Subject matter experts via fine - tuning.
- Local inference for hobbyists and organizations handling sensitive data.
- Programming and math reasoning.
- Long document understanding.
- Visual understanding.
- Out - of - scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages not officially supported by the model.
- Release Date: 04/15/2025
- Version: 1.0
- Model Developers: RedHat (Neural Magic)
Model Optimizations
This model was obtained by quantizing activations and weights of [Mistral - Small - 3.1 - 24B - Instruct - 2503](https://huggingface.co/mistralai/Mistral - Small - 3.1 - 24B - Instruct - 2503) to FP8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix - multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per - channel scheme, whereas activations are quantized with a symmetric dynamic per - token scheme. The [llm - compressor](https://github.com/vllm - project/llm - compressor) library is used for quantization.
đģ Usage Examples
Basic Usage
The above quick - start code is a basic usage example.
Advanced Usage
The following code shows how to create the model:
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForImageTextToText, AutoProcessor
model_stub = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
model_name = model_stub.split("/")[-1]
model = AutoModelForImageTextToText.from_pretrained(model_stub)
processor = AutoProcessor.from_pretrained(model_stub)
recipe = QuantizationModifier(
ignore=["language_model.lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
targets="Linear",
scheme="FP8_dynamic",
)
oneshot(
model=model,
recipe=recipe,
)
save_path = model_name + "-FP8-dynamic"
model.save_pretrained(save_path)
processor.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
đ Documentation
Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (version 1), MMLU - pro, GPQA, HumanEval and MBPP. Non - coding tasks were evaluated with [lm - evaluation - harness](https://github.com/EleutherAI/lm - evaluation - harness), whereas coding tasks were evaluated with a fork of evalplus. vLLM is used as the engine in all cases.
Evaluation details
MMLU
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks mmlu \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
ARC Challenge
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks arc_challenge \
--num_fewshot 25 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
GSM8k
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.9,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks gsm8k \
--num_fewshot 8 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
Hellaswag
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks hellaswag \
--num_fewshot 10 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
Winogrande
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks winogrande \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
TruthfulQA
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks truthfulqa \
--num_fewshot 0 \
--apply_chat_template\
--batch_size auto
MMLU - pro
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks mmlu_pro \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
Coding
The commands below can be used for mbpp by simply replacing the dataset name.
Generation
python3 codegen/generate.py \
--model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
Sanitization
python3 evalplus/sanitize.py \
humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic_vllm_temp_0.2
Evaluation
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic_vllm_temp_0.2-sanitized
Accuracy
Category |
Benchmark |
Mistral - Small - 3.1 - 24B - Instruct - 2503 |
Mistral - Small - 3.1 - 24B - Instruct - 2503 - FP8 - dynamic (this model) |
Recovery |
OpenLLM v1 |
MMLU (5 - shot) |
80.67 |
80.71 |
100.1% |
OpenLLM v1 |
ARC Challenge (25 - shot) |
72.78 |
72.87 |
100.1% |
OpenLLM v1 |
GSM - 8K (5 - shot, strict - match) |
58.68 |
49.96 |
85.1% |
OpenLLM v1 |
Hellaswag (10 - shot) |
83.70 |
83.67 |
100.0% |
OpenLLM v1 |
Winogrande (5 - shot) |
83.74 |
82.56 |
98.6% |
OpenLLM v1 |
TruthfulQA (0 - shot, mc2) |
70.62 |
70.88 |
100.4% |
OpenLLM v1 |
Average |
75.03 |
73.49 |
97.9% |
|
MMLU - Pro (5 - shot) |
67.25 |
66.86 |
99.4% |
|
GPQA CoT main (5 - shot) |
42.63 |
41.07 |
99.4% |
|
GPQA CoT diamond (5 - shot) |
45.96 |
45.45 |
98.9% |
Coding |
HumanEval pass@1 |
84.70 |
84.70 |
100.0% |
Coding |
HumanEval+ pass@1 |
79.50 |
79.30 |
99.8% |
Coding |
MBPP pass@1 |
71.10 |
70.00 |
98.5% |
Coding |
MBPP+ pass@1 |
60.60 |
59.50 |
98.2% |
đ License
This model is released under the apache - 2.0 license.