🚀 Meta-Llama-3-8B-Instruct-FP8-KV
This model is Meta-Llama-3-8B-Instruct quantized to FP8 weights and activations, enabling efficient inference with vLLM.
🚀 Quick Start
Meta-Llama-3-8B-Instruct is quantized to FP8 weights and activations using per-tensor quantization. It is ready for inference with vLLM >= 0.5.0. This model checkpoint also includes per-tensor scales for FP8 quantized KV Cache, which can be accessed through the --kv-cache-dtype fp8
argument in vLLM.
from vllm import LLM
model = LLM(model="neuralmagic/Meta-Llama-3-8B-Instruct-FP8-KV", kv_cache_dtype="fp8")
result = model.generate("Hello, my name is")
✨ Features
- FP8 Quantization: The model uses per-tensor quantization to FP8 weights and activations, optimizing for efficient inference.
- KV Cache Support: It includes per-tensor scales for FP8 quantized KV Cache, accessible via vLLM.
💻 Usage Examples
Basic Usage
from vllm import LLM
model = LLM(model="neuralmagic/Meta-Llama-3-8B-Instruct-FP8-KV", kv_cache_dtype="fp8")
result = model.generate("Hello, my name is")
Advanced Usage
The model was produced using AutoFP8 with calibration samples from ultrachat.
from datasets import load_dataset
from transformers import AutoTokenizer
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
pretrained_model_dir = "meta-llama/Meta-Llama-3-8B-Instruct"
quantized_model_dir = "Meta-Llama-3-8B-Instruct-FP8-KV"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
tokenizer.pad_token = tokenizer.eos_token
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft")
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
quantize_config = BaseQuantizeConfig(
quant_method="fp8",
activation_scheme="static",
ignore_patterns=["re:.*lm_head"],
kv_cache_quant_targets=("k_proj", "v_proj"),
)
model = AutoFP8ForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
model.quantize(examples)
model.save_quantized(quantized_model_dir)
📚 Documentation
Open LLM Leaderboard evaluation scores
|
Meta-Llama-3-8B-Instruct |
Meta-Llama-3-8B-Instruct-FP8 |
Meta-Llama-3-8B-Instruct-FP8-KV (this model) |
gsm8k 5-shot |
75.44 |
74.37 |
74.98 |