Model Overview
Model Features
Model Capabilities
Use Cases
đ Qwen2.5-VL-3B-Instruct-quantized-w8a8
A quantized version of Qwen/Qwen2.5-VL-3B-Instruct for efficient inference.
đ Quick Start
This model is a quantized version of Qwen/Qwen2.5-VL-3B-Instruct, optimized for inference with vLLM >= 0.5.2.
⨠Features
- Model Architecture: Based on Qwen/Qwen2.5-VL-3B-Instruct, taking vision-text as input and generating text output.
- Optimizations: Both weight and activation are quantized to INT8, enabling efficient deployment.
- Release Date: 2/24/2025
- Version: 1.0
- Model Developers: Neural Magic
đĻ Installation
No specific installation steps are provided in the original README. However, the model can be used with vLLM as shown in the usage examples.
đģ Usage Examples
Basic Usage
This model can be deployed efficiently using the vLLM backend.
from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams
# prepare model
llm = LLM(
model="neuralmagic/Qwen2.5-VL-3B-Instruct-quantized.w8a8",
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=2,
)
# prepare inputs
question = "What is the content of this image?"
inputs = {
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
"multi_modal_data": {
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
},
}
# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
đ Documentation
Creation
This model was created with llm-compressor by running the following code snippet as part of a multimodal announcement blog.
Model Creation Code
import base64
from io import BytesIO
import torch
from datasets import load_dataset
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import (
TraceableQwen2_5_VLForConditionalGeneration,
)
# Load model.
model_id = args["model_id"]
model = TraceableQwen2_5_VLForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype="auto",
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Oneshot arguments
DATASET_ID = "lmms-lab/flickr30k"
DATASET_SPLIT = {"calibration": "test[:512]"}
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42)
dampening_frac=args["dampening_frac"]
save_name = f"{model_id.split('/')[1]}-W8A8-samples{NUM_CALIBRATION_SAMPLES}-df{dampening_frac}"
save_path = os.path.join(args["save_dir"], save_name)
print("Save Path will be:", save_path)
# Apply chat template and tokenize inputs.
def preprocess_and_tokenize(example):
# preprocess
buffered = BytesIO()
example["image"].save(buffered, format="PNG")
encoded_image = base64.b64encode(buffered.getvalue())
encoded_image_text = encoded_image.decode("utf-8")
base64_qwen = f"data:image;base64,{encoded_image_text}"
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": base64_qwen},
{"type": "text", "text": "What does the image show?"},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
# tokenize
return processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
)
ds = ds.map(preprocess_and_tokenize, remove_columns=ds["calibration"].column_names)
# Define a oneshot data collator for multimodal inputs.
def data_collator(batch):
assert len(batch) == 1
return {key: torch.tensor(value) for key, value in batch[0].items()}
# Recipe
recipe = [
GPTQModifier(
targets="Linear",
scheme="W8A8",
sequential_targets=["Qwen2_5_VLDecoderLayer"],
ignore=["lm_head", "re:visual.*"],
),
]
SAVE_DIR==f"{model_id.split('/')[1]}-quantized.w8a8"
# Perform oneshot
oneshot(
model=model,
tokenizer=model_id,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
trust_remote_code_model=True,
data_collator=data_collator,
output_dir=SAVE_DIR
)
Evaluation
The model was evaluated using mistral-evals for vision-related tasks and using lm_evaluation_harness for select text-based benchmarks. The evaluations were conducted using the following commands:
Evaluation Commands
Vision Tasks
- vqav2
- docvqa
- mathvista
- mmmu
- chartqa
vllm serve neuralmagic/pixtral-12b-quantized.w8a8 --tensor_parallel_size 1 --max_model_len 25000 --trust_remote_code --max_num_seqs 8 --gpu_memory_utilization 0.9 --dtype float16 --limit_mm_per_prompt image=7
python -m eval.run eval_vllm \
--model_name neuralmagic/pixtral-12b-quantized.w8a8 \
--url http://0.0.0.0:8000 \
--output_dir ~/tmp \
--eval_name <vision_task_name>
Text-based Tasks
MMLU
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks mmlu \
--num_fewshot 5 \
--batch_size auto \
--output_path output_dir
MGSM
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,max_model_len=4096,max_gen_toks=2048,max_num_seqs=128,tensor_parallel_size=<n>,gpu_memory_utilization=0.9 \
--tasks mgsm_cot_native \
--apply_chat_template \
--num_fewshot 0 \
--batch_size auto \
--output_path output_dir
Accuracy
Category | Metric | Qwen/Qwen2.5-VL-3B-Instruct | neuralmagic/Qwen2.5-VL-3B-Instruct-quantized.w4a16 | Recovery (%) |
---|---|---|---|---|
Vision | MMMU (val, CoT) explicit_prompt_relaxed_correctness |
44.56 | 45.67 | 102.49% |
Vision | VQAv2 (val) vqa_match |
75.94 | 75.55 | 99.49% |
Vision | DocVQA (val) anls |
92.53 | 92.32 | 99.77% |
Vision | ChartQA (test, CoT) anywhere_in_answer_relaxed_correctness |
81.20 | 78.80 | 97.04% |
Vision | Mathvista (testmini, CoT) explicit_prompt_relaxed_correctness |
54.15 | 53.85 | 99.45% |
Vision | Average Score | 69.28 | 69.24 | 99.94% |
Text | MGSM (CoT) | 43.69 | 41.98 | 96.09% |
Text | MMLU (5-shot) | 65.32 | 64.83 | 99.25% |
đ§ Technical Details
Inference Performance
This model achieves up to 1.33x speedup in single-stream deployment and up to 1.37x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with vLLM version 0.7.2, and GuideLLM.
Benchmarking Command
``` guidellm --model neuralmagic/Qwen2.5-VL-3B-Instruct-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=Single-stream performance (measured with vLLM version 0.7.2)
Hardware | Model | Average Cost Reduction | Document Visual Question Answering 1680W x 2240H 64/128 Latency (s) |
Document Visual Question Answering 1680W x 2240H 64/128 Queries Per Dollar |
Visual Reasoning 640W x 480H 128/128 Latency (s) |
Visual Reasoning 640W x 480H 128/128 Queries Per Dollar |
Image Captioning 480W x 360H 0/128 Latency (s) |
Image Captioning 480W x 360H 0/128 Queries Per Dollar |
---|---|---|---|---|---|---|---|---|
A6000x1 | Qwen/Qwen2.5-VL-3B-Instruct | 3.1 | 1454 | 1.8 | 2546 | 1.7 | 2610 | |
A6000x1 | neuralmagic/Qwen2.5-VL-3B-Instruct-quantized.w8a8 | 1.27 | 2.6 | 1708 | 1.3 | 3340 | 1.3 | 3459 |
A6000x1 | neuralmagic/Qwen2.5-VL-3B-Instruct-quantized.w4a16 | 1.57 | 2.4 | 1886 | 1.0 | 4409 | 1.0 | 4409 |
A100x1 | Qwen/Qwen2.5-VL-3B-Instruct | 2.2 | 920 | 1.3 | 1603 | 1.2 | 1636 | |
A100x1 | neuralmagic/Qwen2.5-VL-3B-Instruct-quantized.w8a8 | 1.09 | 2.1 | 975 | 1.2 | 1743 | 1.1 | 1814 |
A100x1 | neuralmagic/Qwen2.5-VL-3B-Instruct-quantized.w4a16 | 1.20 | 2.0 | 1011 | 1.0 | 2015 | 1.0 | 2012 |
H100x1 | Qwen/Qwen2.5-VL-3B-Instruct | 1.5 | 0.9 | 740 | 0.9 | 1221 | 0.9 | 1276 |
H100x1 | neuralmagic/Qwen2.5-VL-3B-Instruct-FP8-Dynamic | 1.06 | 1.4 | 768 | 0.9 | 1276 | 0.8 | 1399 |
H100x1 | neuralmagic/Qwen2.5-VL-3B-Instruct-quantized.w4a16 | 1.24 | 0.9 | 1219 | 0.9 | 1270 | 0.8 | 1304 |
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens
**QPD: Queries per dollar, based on on-demand cost at Lambda Labs (observed on 2/18/2025).
Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
Hardware | Model | Average Cost Reduction | Document Visual Question Answering 1680W x 2240H 64/128 Maximum throughput (QPS) |
Document Visual Question Answering 1680W x 2240H 64/128 Queries Per Dollar |
Visual Reasoning 640W x 480H 128/128 Maximum throughput (QPS) |
Visual Reasoning 640W x 480H 128/128 Queries Per Dollar |
Image Captioning 480W x 360H 0/128 Maximum throughput (QPS) |
Image Captioning 480W x 360H 0/128 Queries Per Dollar |
---|---|---|---|---|---|---|---|---|
A6000x1 | Qwen/Qwen2.5-VL-3B-Instruct | 0.5 | 2405 | 2.6 | 11889 | 2.9 | 12909 | |
A6000x1 | neuralmagic/Qwen2.5-VL-3B-Instruct-quantized.w8a8 | 1.26 | 0.6 | 2725 | 3.4 | 15162 | 3.9 | 17673 |
A6000x1 | neuralmagic/Qwen2.5-VL-3B-Instruct-quantized.w4a16 | 1.39 | 0.6 | 2548 | 3.9 | 17437 | 4.7 | 21223 |
A100x1 | Qwen/Qwen2.5-VL-3B-Instruct | 0.8 | 1663 | 3.9 | 7899 | 4.4 | 8924 | |
A100x1 | neuralmagic/Qwen2.5-VL-3B-Instruct-quantized.w8a8 | 1.06 | 0.9 | 1734 | 4.2 | 8488 | 4.7 | 9548 |
A100x1 | neuralmagic/Qwen2.5-VL-3B-Instruct-quantized.w4a16 | 1.10 | 0.9 | 1775 | 4.2 | 8540 | 5.1 | 10318 |
H100x1 | Qwen/Qwen2.5-VL-3B-Instruct | 1.1 | 1188 | 4.3 | 4656 | 4.3 | 4676 | |
H100x1 | neuralmagic/Qwen2.5-VL-3B-Instruct-FP8-Dynamic | 1.15 | 1.4 | 1570 | 4.3 | 4676 | 4.8 | 5220 |
H100x1 | neuralmagic/Qwen2.5-VL-3B-Instruct-quantized.w4a16 | 1.96 | 4.2 | 4598 | 4.1 | 4505 | 4.4 | 4838 |
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens
**QPS: Queries per second.
**QPD: Queries per dollar, based on on-demand cost at Lambda Labs (observed on 2/18/2025).
đ License
This model is licensed under the Apache 2.0 license.






