🚀 Arabic syllables recognition with tashkeel
This is a fine - tuned wav2vec2 model designed to recognize Arabic syllables from speech, trained on a Modern Standard Arabic dataset. A 5 - gram language model is also available with the model.
🚀 Quick Start
Prerequisites
First, install the necessary libraries:
!pip install datasets transformers
!pip install https://github.com/kpu/kenlm/archive/master.zip pyctcdecode
Load the model and processor
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from transformers import Wav2Vec2ProcessorWithLM
processor = Wav2Vec2ProcessorWithLM.from_pretrained('IbrahimSalah/Syllables_final_Large')
model = Wav2Vec2ForCTC.from_pretrained("IbrahimSalah/Syllables_final_Large")
Prepare the dataset
import pandas as pd
dftest = pd.DataFrame(columns=['audio'])
import datasets
from datasets import Dataset
path ='/content/908-33.wav'
dftest['audio']=[path]
dataset = Dataset.from_pandas(dftest)
Process the audio
import torch
import torchaudio
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["audio"])
print(sampling_rate)
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
batch["audio"] = resampler(speech_array).squeeze().numpy()
return batch
Make predictions
import numpy as np
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["audio"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values).logits
print(logits.numpy().shape)
transcription = processor.batch_decode(logits.numpy()).text
print("Prediction:",transcription[0])
💻 Usage Examples
Basic Usage
!pip install datasets transformers
!pip install https://github.com/kpu/kenlm/archive/master.zip pyctcdecode
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from transformers import Wav2Vec2ProcessorWithLM
processor = Wav2Vec2ProcessorWithLM.from_pretrained('IbrahimSalah/Syllables_final_Large')
model = Wav2Vec2ForCTC.from_pretrained("IbrahimSalah/Syllables_final_Large")
import pandas as pd
dftest = pd.DataFrame(columns=['audio'])
import datasets
from datasets import Dataset
path ='/content/908-33.wav'
dftest['audio']=[path]
dataset = Dataset.from_pandas(dftest)
import torch
import torchaudio
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["audio"])
print(sampling_rate)
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
batch["audio"] = resampler(speech_array).squeeze().numpy()
return batch
import numpy as np
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["audio"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values).logits
print(logits.numpy().shape)
transcription = processor.batch_decode(logits.numpy()).text
print("Prediction:",transcription[0])
Advanced Usage
You can then convert the syllables to full word using our fine - tuned mT5 model [IbrahimSalah/Arabic_Syllables_to_text_Converter_Using_MT5]
📚 Documentation
Datasets
- IbrahimSalah/The_Arabic_News_speech_Corpus_Dataset
Tags
- Arabic
- MSA
- Speech
- Syllables
- Wav2vec
- ASR
Paper DOI
https://doi.org/10.60161/2521-001-001-006
📄 License
Citation
BibTeX:
@article{2024SyllableBasedAS,
title={Syllable-Based Arabic Speech Recognition Using Wav2Vec},
author={إبراهيم عبدالعال and مصطفى الشافعي and محمد عبدالواحد},
journal={مجلة اللغات الحاسوبية والمعالجة الآلية للغة العربية},
year={2024},
url={https://api.semanticscholar.org/CorpusID:269151543}
}
Property |
Details |
Model Type |
Fine - tuned wav2vec2 model for Arabic syllable recognition |
Training Data |
Modern Standard Arabic dataset |