đ Ristretto
Ristretto is a cutting - edge Vision Language Model (VLM) that can deploy dynamic image tokens, adjust token quantities flexibly, and enhance the projector architecture, delivering better performance and versatility.
đ Quick Start
Ristretto is a significant advancement in the field of Vision Language Models (VLM). It can deploy dynamic image tokens, allowing for flexible adjustment of token quantities according to task requirements. The enhanced projector architecture supports dynamic token configurations, resulting in improved performance and versatility.
⨠Features
- Dynamic Image Tokens: Capable of deploying and adjusting the quantity of image tokens based on task needs.
- Enhanced Projector Architecture: Supports dynamic token configurations for better performance.
đĻ Installation
pip install torch>=2.3.0
pip install transformers==4.37.0
đģ Usage Examples
Basic Usage
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
import requests
from io import BytesIO
IMAGENET_MEAN = (0.5, 0.5, 0.5)
IMAGENET_STD = (0.5, 0.5, 0.5)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=10, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_data, input_size=384, max_num=10):
image = Image.open(image_data).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
model_path = 'LiAutoAD/Ristretto-3B'
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
image_url = 'https://github.com/user-attachments/assets/83258e94-5d61-48ef-a87f-80dd9d895524'
response = requests.get(image_url)
image_data = BytesIO(response.content)
pixel_values = load_image(image_data, max_num=10).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)
num_image_token = 256
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question} Assistant: {response}')
question = '<image> Please describe the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question} Assistant: {response}')
question = 'What is best title for the image?'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question} Assistant: {response}')
đ Documentation
Evaluation
Property |
Details |
Model Type |
Vision Language Model |
Training Datasets |
lmms - lab/LLaVA - OneVision - Data, BAAI/Infinity - MM |
Base Models |
google/siglip2 - so400m - patch14 - 384, Qwen/Qwen2.5 - 3B - Instruct |
Benchmark |
Qwen2.5-VL-3B |
InternVL2.5-4B |
Ristretto-3B |
MMBench-TEST-avg |
76.8 |
78.2 |
80.1 |
MMStar |
56.3 |
58.7 |
62.6 |
MMMU-VAL |
51.2 |
51.8 |
49.1 |
MathVista-MINI-test |
61.2 |
60.8 |
67.9 |
HallucinationBench |
46.6 |
46.6 |
50.2 |
AI2D |
81.4 |
81.4 |
84.3 |
OCRBench |
82.8 |
82.0 |
84.0 |
MMVet |
60.0 |
61.5 |
61.8 |
Average |
64.5 |
65.1 |
67.6 |
We use VLMEvalKit to evaluate Ristretto-3B. Other results are taken from OpenCompass
đ License
All of our open - source models are licensed under the Apache - 2.0 license.
Citation