đ Cadet-Tiny
Cadet-Tiny is a very small conversational model inspired by Allen AI's Cosmo-XL. It's trained on the SODA dataset and designed for edge inference, even on a device as small as a 2GB RAM Raspberry Pi. Trained off Google's t5-small pretrained model, it's about 2% of the size of the Cosmo-3B model. This is the creator's first SEQ2SEQ NLP Model, and they're excited to share it on HuggingFace!
đ Quick Start
Use the following code snippet to start using Cadet-Tiny:
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import colorful as cf
cf.use_true_colors()
cf.use_style('monokai')
class CadetTinyAgent:
def __init__(self):
print(cf.bold | cf.purple("Waking up Cadet-Tiny..."))
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.tokenizer = AutoTokenizer.from_pretrained("t5-small", model_max_length=512)
self.model = AutoModelForSeq2SeqLM.from_pretrained("ToddGoldfarb/Cadet-Tiny", low_cpu_mem_usage=True).to(self.device)
self.conversation_history = ""
def observe(self, observation):
self.conversation_history = self.conversation_history + observation
if len(self.conversation_history) > 400:
self.conversation_history = self.conversation_history[112:]
def set_input(self, situation_narrative="", role_instruction=""):
input_text = "dialogue: "
if situation_narrative != "":
input_text = input_text + situation_narrative
if role_instruction != "":
input_text = input_text + " <SEP> " + role_instruction
input_text = input_text + " <TURN> " + self.conversation_history
return input_text
def generate(self, situation_narrative, role_instruction, user_response):
user_response = user_response + " <TURN> "
self.observe(user_response)
input_text = self.set_input(situation_narrative, role_instruction)
inputs = self.tokenizer([input_text], return_tensors="pt").to(self.device)
outputs = self.model.generate(inputs["input_ids"], max_new_tokens=512, temperature=0.75, top_p=.95,
do_sample=True)
cadet_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
added_turn = cadet_response + " <TURN> "
self.observe(added_turn)
return cadet_response
def reset_history(self):
self.conversation_history = []
def run(self):
def get_valid_input(prompt, default):
while True:
user_input = input(prompt)
if user_input in ["Y", "N", "y", "n"]:
return user_input
if user_input == "":
return default
while True:
continue_chat = ""
situation_narrative = "Imagine you are Cadet-Tiny talking to ???."
role_instruction = "You are Cadet-Tiny, and you are talking to ???."
self.chat(situation_narrative, role_instruction)
continue_chat = get_valid_input(cf.purple("Start a new conversation with new setup? [Y/N]:"), "Y")
if continue_chat in ["N", "n"]:
break
print(cf.blue("CT: See you!"))
def chat(self, situation_narrative, role_instruction):
print(cf.green(
"Cadet-Tiny is running! Input [RESET] to reset the conversation history and [END] to end the conversation."))
while True:
user_input = input("You: ")
if user_input == "[RESET]":
self.reset_history()
print(cf.green("[Conversation history cleared. Chat with Cadet-Tiny!]"))
continue
if user_input == "[END]":
break
response = self.generate(situation_narrative, role_instruction, user_input)
print(cf.blue("CT: " + response))
def main():
print(cf.bold | cf.blue("LOADING MODEL"))
CadetTiny = CadetTinyAgent()
CadetTiny.run()
if __name__ == '__main__':
main()
đ Documentation
Google Colab Link
Here is the link to the Google Colab file, where the process of training the model and using the SODA public dataset from AI2 is walked through:
Google Colab File
đ License
The model is under the OpenRAIL license.
đ Citations and Special Thanks
Special thanks to Hyunwoo Kim for discussing the best way to use the SODA dataset. If you haven't explored their work on SODA, Prosocial-Dialog, or COSMO, it's recommended. Also, read the paper on SODA!
@article{kim2022soda,
title={SODA: Million-scale Dialogue Distillation with Social Commonsense Contextualization},
author={Hyunwoo Kim and Jack Hessel and Liwei Jiang and Peter West and Ximing Lu and Youngjae Yu and Pei Zhou and Ronan Le Bras and Malihe Alikhani and Gunhee Kim and Maarten Sap and Yejin Choi},
journal={ArXiv},
year={2022},
volume={abs/2212.10465}
}
If you have any questions or comments on improvements, please contact the author at: tcgoldfarb@gmail.com