đ xlmr-lstm-crf-resume-ner2
This model is a fine - tuned version of [xlm - roberta - base](https://huggingface.co/xlm - roberta - base) on the None dataset. It offers high - performance results in evaluation, providing valuable insights for related NLP tasks.
đ Quick Start
This fine - tuned model is ready to be applied in practical scenarios. You can start using it by referring to the official documentation of Hugging Face and loading the model with appropriate code.
⨠Features
- Fine - tuned: Based on the powerful
xlm - roberta - base
model, it is fine - tuned for better performance on specific tasks.
- Multiple Metrics: Achieves good results in multiple evaluation metrics such as precision, recall, F1, and accuracy.
đ Documentation
Model Evaluation Results
This model achieves the following results on the evaluation set:
- Loss: 0.3688
- Precision: 0.7289
- Recall: 0.7578
- F1: 0.7431
- Accuracy: 0.9403
Training and Evaluation Data
More information needed
Training Procedure
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e - 05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training Results
Training Loss |
Epoch |
Step |
Validation Loss |
Precision |
Recall |
F1 |
Accuracy |
2.6224 |
1.0 |
17 |
1.1537 |
0.9517 |
0.0367 |
0.0707 |
0.8445 |
1.0702 |
2.0 |
34 |
0.9869 |
0.0 |
0.0 |
0.0 |
0.8483 |
0.8288 |
3.0 |
51 |
0.6899 |
0.0287 |
0.0029 |
0.0053 |
0.8586 |
0.6586 |
4.0 |
68 |
0.5719 |
0.1512 |
0.0378 |
0.0605 |
0.8705 |
0.5433 |
5.0 |
85 |
0.4887 |
0.2649 |
0.0873 |
0.1313 |
0.8745 |
0.4696 |
6.0 |
102 |
0.4358 |
0.1852 |
0.0631 |
0.0941 |
0.8822 |
0.4114 |
7.0 |
119 |
0.3901 |
0.4455 |
0.3463 |
0.3897 |
0.8914 |
0.3631 |
8.0 |
136 |
0.3684 |
0.4111 |
0.3891 |
0.3998 |
0.9006 |
0.3239 |
9.0 |
153 |
0.3457 |
0.4668 |
0.4991 |
0.4824 |
0.9024 |
0.3047 |
10.0 |
170 |
0.3195 |
0.5824 |
0.4693 |
0.5198 |
0.9142 |
0.2775 |
11.0 |
187 |
0.3110 |
0.5384 |
0.5206 |
0.5294 |
0.9130 |
0.2518 |
12.0 |
204 |
0.3078 |
0.6492 |
0.4703 |
0.5455 |
0.9176 |
0.2362 |
13.0 |
221 |
0.3036 |
0.5136 |
0.5739 |
0.5420 |
0.9130 |
0.2174 |
14.0 |
238 |
0.2983 |
0.5499 |
0.6023 |
0.5749 |
0.9146 |
0.2037 |
15.0 |
255 |
0.2909 |
0.6167 |
0.5656 |
0.5900 |
0.9234 |
0.1842 |
16.0 |
272 |
0.3100 |
0.5866 |
0.6141 |
0.6000 |
0.9201 |
0.1706 |
17.0 |
289 |
0.2949 |
0.6067 |
0.6234 |
0.6149 |
0.9231 |
0.1648 |
18.0 |
306 |
0.2992 |
0.6047 |
0.6188 |
0.6117 |
0.9239 |
0.1485 |
19.0 |
323 |
0.2972 |
0.6012 |
0.6761 |
0.6364 |
0.9228 |
0.1381 |
20.0 |
340 |
0.2910 |
0.6372 |
0.6423 |
0.6397 |
0.9282 |
0.1259 |
21.0 |
357 |
0.2822 |
0.6575 |
0.6534 |
0.6555 |
0.9310 |
0.1178 |
22.0 |
374 |
0.3007 |
0.6297 |
0.6862 |
0.6567 |
0.9278 |
0.1123 |
23.0 |
391 |
0.2864 |
0.6537 |
0.6859 |
0.6694 |
0.9308 |
0.1017 |
24.0 |
408 |
0.2988 |
0.6924 |
0.6849 |
0.6886 |
0.9360 |
0.0961 |
25.0 |
425 |
0.3043 |
0.6219 |
0.7080 |
0.6622 |
0.9299 |
0.091 |
26.0 |
442 |
0.3092 |
0.6389 |
0.7298 |
0.6813 |
0.9293 |
0.0866 |
27.0 |
459 |
0.3121 |
0.6346 |
0.6806 |
0.6568 |
0.9278 |
0.0808 |
28.0 |
476 |
0.2988 |
0.7084 |
0.7040 |
0.7062 |
0.9376 |
0.0723 |
29.0 |
493 |
0.2962 |
0.6888 |
0.7112 |
0.6998 |
0.9372 |
0.0692 |
30.0 |
510 |
0.3080 |
0.6906 |
0.7248 |
0.7073 |
0.9365 |
0.0627 |
31.0 |
527 |
0.3178 |
0.6683 |
0.7077 |
0.6874 |
0.9342 |
0.0647 |
32.0 |
544 |
0.3044 |
0.7079 |
0.7211 |
0.7144 |
0.9380 |
0.0557 |
33.0 |
561 |
0.3157 |
0.7206 |
0.7200 |
0.7203 |
0.9382 |
0.0532 |
34.0 |
578 |
0.3220 |
0.6841 |
0.7501 |
0.7156 |
0.9371 |
0.0496 |
35.0 |
595 |
0.3206 |
0.6452 |
0.7565 |
0.6964 |
0.9314 |
0.0494 |
36.0 |
612 |
0.3203 |
0.6901 |
0.7533 |
0.7203 |
0.9376 |
0.0426 |
37.0 |
629 |
0.3348 |
0.7123 |
0.7408 |
0.7263 |
0.9374 |
0.0416 |
38.0 |
646 |
0.3317 |
0.7065 |
0.7389 |
0.7224 |
0.9376 |
0.0418 |
39.0 |
663 |
0.3323 |
0.7099 |
0.7378 |
0.7236 |
0.9379 |
0.0372 |
40.0 |
680 |
0.3322 |
0.7087 |
0.7543 |
0.7308 |
0.9383 |
0.0349 |
41.0 |
697 |
0.3295 |
0.7213 |
0.7261 |
0.7237 |
0.9381 |
0.0357 |
42.0 |
714 |
0.3474 |
0.7 |
0.7471 |
0.7228 |
0.9368 |
0.034 |
43.0 |
731 |
0.3342 |
0.7158 |
0.7554 |
0.7350 |
0.9384 |
0.0301 |
44.0 |
748 |
0.3417 |
0.7271 |
0.7423 |
0.7346 |
0.9397 |
0.0297 |
45.0 |
765 |
0.3416 |
0.7284 |
0.7501 |
0.7391 |
0.9397 |
0.0278 |
46.0 |
782 |
0.3583 |
0.7254 |
0.7567 |
0.7408 |
0.9403 |
0.0264 |
47.0 |
799 |
0.3515 |
0.7246 |
0.7583 |
0.7411 |
0.9405 |
0.0254 |
48.0 |
816 |
0.3544 |
0.7147 |
0.7628 |
0.7380 |
0.9405 |
0.0239 |
49.0 |
833 |
0.3555 |
0.7161 |
0.7706 |
0.7423 |
0.9392 |
0.0227 |
50.0 |
850 |
0.3611 |
0.7164 |
0.7687 |
0.7417 |
0.9400 |
0.023 |
51.0 |
867 |
0.3646 |
0.7080 |
0.7687 |
0.7371 |
0.9389 |
0.0217 |
52.0 |
884 |
0.3718 |
0.7344 |
0.7639 |
0.7489 |
0.9404 |
0.0214 |
53.0 |
901 |
0.3656 |
0.7137 |
0.7618 |
0.7370 |
0.9397 |
0.0197 |
54.0 |
918 |
0.3700 |
0.7060 |
0.7612 |
0.7326 |
0.9387 |
0.019 |
55.0 |
935 |
0.3764 |
0.7166 |
0.7762 |
0.7452 |
0.9401 |
0.0183 |
56.0 |
952 |
0.3688 |
0.7289 |
0.7578 |
0.7431 |
0.9403 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
đ License
This project is licensed under the MIT license.