🚀 Whisper Persian Turbooo
This is an automatic speech - recognition model based on the Whisper architecture, specifically trained for Persian language processing, suitable for medical scenarios.
🚀 Quick Start
Model Information
Property |
Details |
Model Type |
Automatic Speech Recognition |
Training Datasets |
mozilla - foundation/common_voice_11_0 |
Evaluation Metrics |
WER (Word Error Rate) |
Base Model |
openai/whisper - large - v3 - turbo |
Library Used |
transformers |
Tags |
medical |
Training Metrics
- Training Loss: 0.013100
- Validation Loss: 0.043175
- Number of Epochs: 1
📦 Installation
To use this model in a Google Colab environment, you need to install the required packages. Run the following command:
!pip install torch torchaudio transformers pydub google - colab
💻 Usage Examples
Basic Usage
!pip install torch torchaudio transformers pydub google-colab
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from pydub import AudioSegment
import os
from google.colab import files
model_id = "hackergeek98/whisper-persian-turbooo"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id).to(device)
processor = AutoProcessor.from_pretrained(model_id)
whisper_pipe = pipeline(
"automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=0 if torch.cuda.is_available() else -1
)
def convert_to_wav(audio_path):
audio = AudioSegment.from_file(audio_path)
wav_path = "converted_audio.wav"
audio.export(wav_path, format="wav")
return wav_path
def split_audio(audio_path, chunk_length_ms=30000):
audio = AudioSegment.from_wav(audio_path)
chunks = [audio[i:i+chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
chunk_paths = []
for i, chunk in enumerate(chunks):
chunk_path = f"chunk_{i}.wav"
chunk.export(chunk_path, format="wav")
chunk_paths.append(chunk_path)
return chunk_paths
def transcribe_long_audio(audio_path):
wav_path = convert_to_wav(audio_path)
chunk_paths = split_audio(wav_path)
transcription = ""
for chunk in chunk_paths:
result = whisper_pipe(chunk)
transcription += result["text"] + "\n"
os.remove(chunk)
os.remove(wav_path)
text_path = "transcription.txt"
with open(text_path, "w") as f:
f.write(transcription)
return text_path
uploaded = files.upload()
audio_file = list(uploaded.keys())[0]
transcription_file = transcribe_long_audio(audio_file)
files.download(transcription_file)
📄 License
This project is licensed under the MIT License.