Segformer B5 Finetuned IDD L2 V2
This model is an image segmentation model based on NVIDIA's MIT-B5 architecture, fine-tuned on the IDD 20K semantic segmentation dataset, suitable for road scene understanding tasks.
Downloads 29
Release Time : 3/25/2025
Model Overview
SegFormer-B5 is an efficient semantic segmentation model, fine-tuned on the IDD 20K dataset, capable of accurately identifying various objects and regions in road scenes, including roads, pedestrians, vehicles, buildings, etc.
Model Features
High-precision road scene segmentation
Fine-tuned on the IDD 20K dataset, it can accurately identify various scene elements such as roads, sidewalks, and vehicles.
Multi-category recognition capability
Supports recognition of over 20 different road scene categories, including static elements (e.g., roads, buildings) and dynamic elements (e.g., pedestrians, vehicles).
Optimized training parameters
Trained using the Adam optimizer and linear learning rate scheduler with a learning rate of 0.0006 for 50 epochs.
Model Capabilities
Image segmentation
Road scene understanding
Multi-category object recognition
Use Cases
Autonomous driving
Road scene parsing
Used for real-time understanding and segmentation of road environments in autonomous driving systems.
Achieved a mean Intersection over Union (mIoU) of 0.7180 on the IDD 20K evaluation set.
Intelligent transportation systems
Traffic element monitoring
Identifies and counts traffic participants such as vehicles and pedestrians on the road.
Cyclist recognition accuracy reached 0.8434, and pedestrian recognition accuracy reached 0.8057.
🚀 segformer-b5-finetuned-IDD-L2_v2
This model is a fine - tuned version of [nvidia/mit - b5](https://huggingface.co/nvidia/mit - b5) on the IDD 20K Semantic Segmentation Dataset, designed for high - performance image segmentation.
[](https://wandb.ai/musa - wijanarko/huggingface/runs/voqx3zox)
🚀 Quick Start
This model is a fine - tuned version of [nvidia/mit - b5](https://huggingface.co/nvidia/mit - b5) on the IDD 20K Semantic Segmentation Dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.5563
- Mean Iou: 0.7180
- Mean Accuracy: 0.8224
- Overall Accuracy: 0.9083
- Accuracy Road: 0.9716
- Accuracy Parking: 0.7949
- Accuracy Sidewalk: 0.8240
- Accuracy Rail track: 0.6408
- Accuracy Person: 0.8057
- Accuracy Rider: 0.8434
- Accuracy Motorcycle: 0.8762
- Accuracy Autorickshaw: 0.9451
- Accuracy Truck: 0.9122
- Accuracy Curb: 0.8112
- Accuracy Fence: 0.5699
- Accuracy Billboard: 0.7605
- Accuracy Pole: 0.6010
- Accuracy Building: 0.8678
- Accuracy Vegetation: 0.9495
- Accuracy Sky: 0.9841
- Iou Road: 0.9391
- Iou Parking: 0.6620
- Iou Sidewalk: 0.6707
- Iou Rail track: 0.5025
- Iou Person: 0.6726
- Iou Rider: 0.7228
- Iou Motorcycle: 0.7637
- Iou Autorickshaw: 0.8882
- Iou Truck: 0.8506
- Iou Curb: 0.6721
- Iou Fence: 0.4571
- Iou Billboard: 0.6238
- Iou Pole: 0.4831
- Iou Building: 0.7293
- Iou Vegetation: 0.8792
- Iou Sky: 0.9707
📚 Documentation
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Road | Accuracy Parking | Accuracy Sidewalk | Accuracy Rail track | Accuracy Person | Accuracy Rider | Accuracy Motorcycle | Accuracy Autorickshaw | Accuracy Truck | Accuracy Curb | Accuracy Fence | Accuracy Billboard | Accuracy Pole | Accuracy Building | Accuracy Vegetation | Accuracy Sky | Iou Road | Iou Parking | Iou Sidewalk | Iou Rail track | Iou Person | Iou Rider | Iou Motorcycle | Iou Autorickshaw | Iou Truck | Iou Curb | Iou Fence | Iou Billboard | Iou Pole | Iou Building | Iou Vegetation | Iou Sky |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3096 | 1.0 | 202 | 0.3310 | 0.6476 | 0.7663 | 0.8841 | 0.9538 | 0.7998 | 0.7838 | 0.5755 | 0.6912 | 0.7355 | 0.8445 | 0.9518 | 0.8603 | 0.7173 | 0.3997 | 0.6938 | 0.4456 | 0.8868 | 0.9531 | 0.9690 | 0.9256 | 0.6317 | 0.5876 | 0.4378 | 0.5705 | 0.5911 | 0.6722 | 0.8070 | 0.7758 | 0.6255 | 0.3351 | 0.5507 | 0.3663 | 0.6693 | 0.8551 | 0.9600 |
0.2786 | 2.0 | 404 | 0.3369 | 0.6560 | 0.7917 | 0.8774 | 0.8968 | 0.8571 | 0.8009 | 0.5009 | 0.7221 | 0.8105 | 0.8267 | 0.9102 | 0.9216 | 0.8204 | 0.6046 | 0.6927 | 0.5244 | 0.8650 | 0.9354 | 0.9773 | 0.8834 | 0.5556 | 0.5941 | 0.4215 | 0.6054 | 0.6340 | 0.6926 | 0.8403 | 0.7757 | 0.6229 | 0.3671 | 0.5681 | 0.4130 | 0.6967 | 0.8610 | 0.9641 |
0.2541 | 3.0 | 606 | 0.3013 | 0.6796 | 0.7930 | 0.8958 | 0.9724 | 0.7579 | 0.8132 | 0.5424 | 0.7483 | 0.8020 | 0.8235 | 0.9296 | 0.9107 | 0.8067 | 0.5309 | 0.7415 | 0.5359 | 0.8420 | 0.9502 | 0.9806 | 0.9336 | 0.6384 | 0.6194 | 0.4623 | 0.6185 | 0.6505 | 0.7102 | 0.8534 | 0.8099 | 0.6446 | 0.3983 | 0.5839 | 0.4236 | 0.6975 | 0.8641 | 0.9660 |
0.2304 | 4.0 | 808 | 0.3055 | 0.6860 | 0.8016 | 0.8947 | 0.9493 | 0.8219 | 0.7667 | 0.5809 | 0.7948 | 0.7780 | 0.8393 | 0.9303 | 0.9033 | 0.7869 | 0.5968 | 0.7070 | 0.5882 | 0.8711 | 0.9259 | 0.9851 | 0.9250 | 0.6310 | 0.6435 | 0.4815 | 0.6264 | 0.6589 | 0.7188 | 0.8609 | 0.8095 | 0.6519 | 0.4044 | 0.5840 | 0.4376 | 0.7066 | 0.8697 | 0.9671 |
0.214 | 5.0 | 1010 | 0.3138 | 0.6845 | 0.7921 | 0.8967 | 0.9526 | 0.8481 | 0.8431 | 0.4857 | 0.7539 | 0.7570 | 0.8772 | 0.9463 | 0.8889 | 0.7298 | 0.4582 | 0.7475 | 0.5890 | 0.8661 | 0.9449 | 0.9850 | 0.9289 | 0.6438 | 0.6386 | 0.4351 | 0.6379 | 0.6594 | 0.7182 | 0.8578 | 0.8239 | 0.6402 | 0.3870 | 0.5965 | 0.4537 | 0.6955 | 0.8695 | 0.9666 |
0.2029 | 6.0 | 1212 | 0.3123 | 0.6914 | 0.8010 | 0.8988 | 0.9697 | 0.7612 | 0.8111 | 0.6453 | 0.7988 | 0.8621 | 0.8112 | 0.9377 | 0.9028 | 0.7567 | 0.5211 | 0.7047 | 0.5390 | 0.8494 | 0.9638 | 0.9822 | 0.9339 | 0.6378 | 0.6746 | 0.4754 | 0.6271 | 0.6660 | 0.7143 | 0.8682 | 0.8305 | 0.6344 | 0.4264 | 0.5947 | 0.4335 | 0.7168 | 0.8614 | 0.9679 |
0.1837 | 7.0 | 1414 | 0.3201 | 0.6963 | 0.8009 | 0.9008 | 0.9614 | 0.8304 | 0.7910 | 0.5696 | 0.7538 | 0.8212 | 0.8642 | 0.9357 | 0.9092 | 0.7900 | 0.5475 | 0.6914 | 0.5137 | 0.9004 | 0.9509 | 0.9841 | 0.9337 | 0.6534 | 0.6600 | 0.4621 | 0.6489 | 0.6881 | 0.7289 | 0.8715 | 0.8325 | 0.6717 | 0.4265 | 0.5842 | 0.4306 | 0.7074 | 0.8725 | 0.9683 |
0.1904 | 8.0 | 1616 | 0.3075 | 0.6946 | 0.8092 | 0.8997 | 0.9693 | 0.7558 | 0.7707 | 0.6996 | 0.7802 | 0.8379 | 0.8572 | 0.9428 | 0.8965 | 0.7714 | 0.5436 | 0.7467 | 0.6316 | 0.8216 | 0.9398 | 0.9827 | 0.9350 | 0.6371 | 0.6389 | 0.4958 | 0.6434 | 0.6665 | 0.7272 | 0.8646 | 0.8259 | 0.6533 | 0.4153 | 0.5983 | 0.4638 | 0.7058 | 0.8745 | 0.9687 |
0.166 | 9.0 | 1818 | 0.3127 | 0.7018 | 0.8110 | 0.9030 | 0.9725 | 0.7634 | 0.8258 | 0.6332 | 0.7766 | 0.8286 | 0.8336 | 0.9274 | 0.9101 | 0.8199 | 0.5639 | 0.7524 | 0.5788 | 0.8569 | 0.9506 | 0.9828 | 0.9342 | 0.6427 | 0.6429 | 0.4986 | 0.6563 | 0.6966 | 0.7359 | 0.8724 | 0.8262 | 0.6580 | 0.4284 | 0.6059 | 0.4654 | 0.7232 | 0.8738 | 0.9687 |
0.157 | 10.0 | 2020 | 0.3267 | 0.7024 | 0.8168 | 0.9020 | 0.9604 | 0.8061 | 0.7791 | 0.6743 | 0.8065 | 0.8319 | 0.8585 | 0.9401 | 0.9024 | 0.7924 | 0.5971 | 0.7363 | 0.5982 | 0.8637 | 0.9412 | 0.9811 | 0.9341 | 0.6525 | 0.6635 | 0.5021 | 0.6506 | 0.6902 | 0.7353 | 0.8638 | 0.8235 | 0.6649 | 0.4250 | 0.6045 | 0.4686 | 0.7166 | 0.8754 | 0.9686 |
0.1543 | 11.0 | 2222 | 0.3260 | 0.7009 | 0.8131 | 0.9029 | 0.9753 | 0.7483 | 0.8429 | 0.6313 | 0.7917 | 0.8380 | 0.8368 | 0.9411 | 0.8959 | 0.7904 | 0.5871 | 0.7533 | 0.5913 | 0.8523 | 0.9509 | 0.9824 | 0.9341 | 0.6377 | 0.6377 | 0.4966 | 0.6583 | 0.6951 | 0.7325 | 0.8603 | 0.8235 | 0.6620 | 0.4303 | 0.6088 | 0.4709 | 0.7213 | 0.8763 | 0.9689 |
0.1474 | 12.0 | 2424 | 0.3394 | 0.7054 | 0.8179 | 0.9028 | 0.9585 | 0.8439 | 0.8303 | 0.6732 | 0.7800 | 0.8231 | 0.8755 | 0.9453 | 0.8985 | 0.7896 | 0.5814 | 0.7545 | 0.5047 | 0.8994 | 0.9452 | 0.9842 | 0.9351 | 0.6593 | 0.6707 | 0.5076 | 0.6632 | 0.6995 | 0.7427 | 0.8737 | 0.8403 | 0.6595 | 0.4371 | 0.6068 | 0.4317 | 0.7151 | 0.8752 | 0.9693 |
0.1365 | 13.0 | 2626 | 0.3347 | 0.7121 | 0.8220 | 0.9063 | 0.9706 | 0.7858 | 0.8210 | 0.6734 | 0.8003 | 0.8490 | 0.8637 | 0.9461 | 0.9108 | 0.7885 | 0.6000 | 0.7537 | 0.5916 | 0.8648 | 0.9510 | 0.9815 | 0.9387 | 0.6604 | 0.6668 | 0.5029 | 0.6702 | 0.7067 | 0.7480 | 0.8793 | 0.8403 | 0.6713 | 0.4449 | 0.6162 | 0.4739 | 0.7280 | 0.8774 | 0.9689 |
0.1301 | 14.0 | 2828 | 0.3412 | 0.7148 | 0.8159 | 0.9073 | 0.9734 | 0.7725 | 0.8092 | 0.6343 | 0.7902 | 0.8236 | 0.8692 | 0.9424 | 0.9058 | 0.8016 | 0.5709 | 0.7403 | 0.6210 | 0.8633 | 0.9524 | 0.9838 | 0.9384 | 0.6549 | 0.6718 | 0.5043 | 0.6695 | 0.7121 | 0.7544 | 0.8832 | 0.8444 | 0.6744 | 0.4519 | 0.6165 | 0.4869 | 0.7252 | 0.8787 | 0.9696 |
0.1216 | 15.0 | 3030 | 0.3623 | 0.7137 | 0.8187 | 0.9071 | 0.9686 | 0.8045 | 0.8266 | 0.6700 | 0.8050 | 0.8177 | 0.8601 | 0.9466 | 0.9172 | 0.8057 | 0.5325 | 0.7487 | 0.5887 | 0.8770 | 0.9476 | 0.9830 | 0.9390 | 0.6654 | 0.6707 | 0.5055 | 0.6697 | 0.7121 | 0.7563 | 0.8813 | 0.8468 | 0.6702 | 0.4311 | 0.6210 | 0.4756 | 0.7260 | 0.8795 | 0.9699 |
0.1198 | 16.0 | 3232 | 0.3660 | 0.7154 | 0.8230 | 0.9073 | 0.9703 | 0.8029 | 0.8357 | 0.6354 | 0.8038 | 0.8289 | 0.8623 | 0.9484 | 0.9166 | 0.8085 | 0.6043 | 0.7602 | 0.5904 | 0.8719 | 0.9444 | 0.9839 | 0.9385 | 0.6613 | 0.6717 | 0.4995 | 0.6695 | 0.7130 | 0.7542 | 0.8825 | 0.8511 | 0.6757 | 0.4554 | 0.6205 | 0.4779 | 0.7279 | 0.8782 | 0.9699 |
0.1264 | 17.0 | 3434 | 0.3688 | 0.7093 | 0.8161 | 0.9037 | 0.9631 | 0.7818 | 0.7960 | 0.7013 | 0.8166 | 0.8203 | 0.8650 | 0.9403 | 0.9087 | 0.7833 | 0.5580 | 0.7223 | 0.5917 | 0.8796 | 0.9515 | 0.9789 | 0.9339 | 0.6401 | 0.6720 | 0.4989 | 0.6648 | 0.7075 | 0.7501 | 0.8823 | 0.8481 | 0.6613 | 0.4408 | 0.6131 | 0.4704 | 0.7195 | 0.8767 | 0.9687 |
0.137 | 18.0 | 3636 | 0.3583 | 0.7079 | 0.8131 | 0.9048 | 0.9699 | 0.7900 | 0.8168 | 0.6048 | 0.8107 | 0.8355 | 0.8609 | 0.9340 | 0.9144 | 0.7944 | 0.4969 | 0.7738 | 0.6219 | 0.8578 | 0.9431 | 0.9840 | 0.9366 | 0.6536 | 0.6658 | 0.5010 | 0.6672 | 0.7036 | 0.7478 | 0.8792 | 0.8352 | 0.6600 | 0.4237 | 0.6080 | 0.4789 | 0.7174 | 0.8782 | 0.9695 |
0.1243 | 19.0 | 3838 | 0.3671 | 0.7050 | 0.8140 | 0.9045 | 0.9728 | 0.7609 | 0.8216 | 0.6357 | 0.7975 | 0.8456 | 0.8801 | 0.9328 | 0.8930 | 0.7846 | 0.5696 | 0.7238 | 0.5972 | 0.8748 | 0.9539 | 0.9808 | 0.9370 | 0.6470 | 0.6367 | 0.4900 | 0.6577 | 0.7019 | 0.7449 | 0.8665 | 0.8285 | 0.6600 | 0.4545 | 0.6079 | 0.4741 | 0.7283 | 0.8765 | 0.9693 |
0.1139 | 20.0 | 4040 | 0.3773 | 0.7114 | 0.8169 | 0.9063 | 0.9745 | 0.7752 | 0.8003 | 0.6377 | 0.7977 | 0.8502 | 0.8648 | 0.9407 | 0.9017 | 0.8282 | 0.5676 | 0.7387 | 0.6023 | 0.8613 | 0.9465 | 0.9837 | 0.9388 | 0.6584 | 0.6593 | 0.5051 | 0.6649 | 0.7108 | 0.7508 | 0.8775 | 0.8388 | 0.6628 | 0.4501 | 0.6150 | 0.4735 | 0.7273 | 0.8790 | 0.9698 |
0.107 | 21.0 | 4242 | 0.3894 | 0.7156 | 0.8208 | 0.9075 | 0.9698 | 0.8161 | 0.8183 | 0.6471 | 0.7960 | 0.8217 | 0.8852 | 0.9457 | 0.9072 | 0.8157 | 0.5433 | 0.7691 | 0.6085 | 0.8623 | 0.9432 | 0.9830 | 0.9399 | 0.6685 | 0.6703 | 0.5096 | 0.6752 | 0.7144 | 0.7542 | 0.8816 | 0.8473 | 0.6670 | 0.4446 | 0.6210 | 0.4815 | 0.7263 | 0.8791 | 0.9701 |
0.1031 | 22.0 | 4444 | 0.4017 | 0.7151 | 0.8233 | 0.9073 | 0.9691 | 0.8062 | 0.8372 | 0.6409 | 0.8117 | 0.8351 | 0.8776 | 0.9459 | 0.9121 | 0.8086 | 0.5799 | 0.7538 | 0.6018 | 0.8625 | 0.9452 | 0.9853 | 0.9387 | 0.6634 | 0.6669 | 0.5031 | 0.6714 | 0.7145 | 0.7572 | 0.8839 | 0.8469 | 0.6665 | 0.4540 | 0.6171 | 0.4809 | 0.7264 | 0.8800 | 0.9702 |
0.0999 | 23.0 | 4646 | 0.4116 | 0.7157 | 0.8202 | 0.9077 | 0.9743 | 0.7844 | 0.8315 | 0.6443 | 0.7960 | 0.8279 | 0.8840 | 0.9517 | 0.8990 | 0.8163 | 0.5712 | 0.7390 | 0.6063 | 0.8684 | 0.9476 | 0.9821 | 0.9395 | 0.6627 | 0.6683 | 0.5113 | 0.6759 | 0.7177 | 0.7575 | 0.8790 | 0.8417 | 0.6645 | 0.4521 | 0.6198 | 0.4838 | 0.7280 | 0.8797 | 0.9703 |
0.0963 | 24.0 | 4848 | 0.4264 | 0.7153 | 0.8177 | 0.9074 | 0.9754 | 0.7781 | 0.8163 | 0.6371 | 0.8127 | 0.8306 | 0.8785 | 0.9477 | 0.9128 | 0.7785 | 0.5563 | 0.7605 | 0.5915 | 0.8720 | 0.9529 | 0.9827 | 0.9389 | 0.6555 | 0.6780 | 0.5042 | 0.6689 | 0.7179 | 0.7590 | 0.8842 | 0.8467 | 0.6665 | 0.4506 | 0.6248 | 0.4772 | 0.7244 | 0.8784 | 0.9703 |
0.096 | 25.0 | 5050 | 0.4291 | 0.7157 | 0.8208 | 0.9078 | 0.9727 | 0.7987 | 0.8335 | 0.6217 | 0.8103 | 0.8348 | 0.8773 | 0.9458 | 0.9083 | 0.8045 | 0.5717 | 0.7563 | 0.5977 | 0.8668 | 0.9508 | 0.9825 | 0.9392 | 0.6624 | 0.6659 | 0.5007 | 0.6680 | 0.7168 | 0.7586 | 0.8855 | 0.8497 | 0.6674 | 0.4571 | 0.6224 | 0.4799 | 0.7274 | 0.8794 | 0.9702 |
0.0926 | 26.0 | 5252 | 0.4360 | 0.7169 | 0.8230 | 0.9081 | 0.9721 | 0.7966 | 0.8304 | 0.6249 | 0.8104 | 0.8352 | 0.8746 | 0.9530 | 0.9080 | 0.8115 | 0.5851 | 0.7736 | 0.5962 | 0.8616 | 0.9495 | 0.9848 | 0.9396 | 0.6643 | 0.6679 | 0.5000 | 0.6711 | 0.7208 | 0.7626 | 0.8836 | 0.8481 | 0.6672 | 0.4583 | 0.6277 | 0.4808 | 0.7288 | 0.8794 | 0.9704 |
0.0903 | 27.0 | 5454 | 0.4453 | 0.7166 | 0.8226 | 0.9077 | 0.9726 | 0.7853 | 0.8258 | 0.6282 | 0.8004 | 0.8374 | 0.8824 | 0.9457 | 0.9191 | 0.8191 | 0.5907 | 0.7600 | 0.5891 | 0.8771 | 0.9470 | 0.9820 | 0.9392 | 0.6602 | 0.6705 | 0.5029 | 0.6762 | 0.7191 | 0.7619 | 0.8867 | 0.8472 | 0.6657 | 0.4559 | 0.6253 | 0.4776 | 0.7277 | 0.8797 | 0.9702 |
0.093 | 28.0 | 5656 | 0.4438 | 0.7152 | 0.8195 | 0.9072 | 0.9696 | 0.7980 | 0.8227 | 0.6421 | 0.7945 | 0.8561 | 0.8705 | 0.9487 | 0.9011 | 0.8025 | 0.5575 | 0.7460 | 0.5975 | 0.8694 | 0.9504 | 0.9847 | 0.9372 | 0.6581 | 0.6650 | 0.5061 | 0.6746 | 0.7209 | 0.7549 | 0.8822 | 0.8461 | 0.6640 | 0.4536 | 0.6201 | 0.4814 | 0.7290 | 0.8786 | 0.9706 |
0.0883 | 29.0 | 5858 | 0.4514 | 0.7173 | 0.8231 | 0.9079 | 0.9714 | 0.7987 | 0.8199 | 0.6475 | 0.8239 | 0.8308 | 0.8722 | 0.9480 | 0.9129 | 0.8073 | 0.5782 | 0.7659 | 0.5917 | 0.8685 | 0.9516 | 0.9807 | 0.9395 | 0.6652 | 0.6729 | 0.5059 | 0.6700 | 0.7222 | 0.7621 | 0.8844 | 0.8489 | 0.6674 | 0.4604 | 0.6219 | 0.4785 | 0.7282 | 0.8790 | 0.9700 |
0.0857 | 30.0 | 6060 | 0.4478 | 0.7175 | 0.8225 | 0.9081 | 0.9691 | 0.8046 | 0.8208 | 0.6461 | 0.8021 | 0.8401 | 0.8844 | 0.9456 | 0.9117 | 0.8035 | 0.5546 | 0.7730 | 0.6106 | 0.8596 | 0.9510 | 0.9836 | 0.9387 | 0.6648 | 0.6688 | 0.5043 | 0.6730 | 0.7209 | 0.7629 | 0.8874 | 0.8509 | 0.6693 | 0.4518 | 0.6229 | 0.4867 | 0.7293 | 0.8788 | 0.9703 |
0.0852 | 31.0 | 6262 | 0.4704 | 0.7165 | 0.8207 | 0.9078 | 0.9735 | 0.7878 | 0.8214 | 0.6576 | 0.8043 | 0.8423 | 0.8666 | 0.9484 | 0.9023 | 0.8110 | 0.5632 | 0.7524 | 0.5969 | 0.8748 | 0.9448 | 0.9844 | 0.9387 | 0.6608 | 0.6739 | 0.5054 | 0.6715 | 0.7218 | 0.7640 | 0.8829 | 0.8412 | 0.6700 | 0.4513 | 0.6232 | 0.4796 | 0.7300 | 0.8799 | 0.9706 |
0.0813 | 32.0 | 6464 | 0.4642 | 0.7173 | 0.8239 | 0.9080 | 0.9698 | 0.7989 | 0.8283 | 0.6422 | 0.8068 | 0.8390 | 0.8813 | 0.9479 | 0.9081 | 0.8147 | 0.5751 | 0.7772 | 0.5907 | 0.8678 | 0.9499 | 0.9842 | 0.9388 | 0.6639 | 0.6757 | 0.5069 | 0.6708 | 0.7210 | 0.7603 | 0.8852 | 0.8482 | 0.6683 | 0.4588 | 0.6207 | 0.4786 | 0.7296 | 0.8797 | 0.9708 |
0.0807 | 33.0 | 6666 | 0.4811 | 0.7177 | 0.8218 | 0.9079 | 0.9710 | 0.8003 | 0.8216 | 0.6509 | 0.7969 | 0.8468 | 0.8685 | 0.9483 | 0.9088 | 0.8122 | 0.5717 | 0.7543 | 0.5995 | 0.8662 | 0.9477 | 0.9843 | 0.9387 | 0.6627 | 0.6763 | 0.5087 | 0.6744 | 0.7237 | 0.7632 | 0.8847 | 0.8476 | 0.6656 | 0.4574 | 0.6202 | 0.4806 | 0.7295 | 0.8799 | 0.9707 |
0.0804 | 34.0 | 6868 | 0.4824 | 0.7176 | 0.8220 | 0.9079 | 0.9699 | 0.7993 | 0.8269 | 0.6392 | 0.8077 | 0.8321 | 0.8793 | 0.9479 | 0.9114 | 0.8028 | 0.5786 | 0.7535 | 0.5934 | 0.8784 | 0.9469 | 0.9849 | 0.9384 | 0.6621 | 0.6708 | 0.5042 | 0.6736 | 0.7208 | 0.7631 | 0.8879 | 0.8515 | 0.6696 | 0.4597 | 0.6227 | 0.4789 | 0.7280 | 0.8794 | 0.9706 |
0.0769 | 35.0 | 7070 | 0.4960 | 0.7178 | 0.8214 | 0.9081 | 0.9694 | 0.8053 | 0.8223 | 0.6416 | 0.7990 | 0.8403 | 0.8779 | 0.9476 | 0.9132 | 0.8100 | 0.5511 | 0.7574 | 0.6043 | 0.8715 | 0.9481 | 0.9829 | 0.9386 | 0.6632 | 0.6749 | 0.5031 | 0.6727 | 0.7218 | 0.7654 | 0.8878 | 0.8495 | 0.6725 | 0.4490 | 0.6229 | 0.4840 | 0.7285 | 0.8798 | 0.9706 |
0.0776 | 36.0 | 7272 | 0.4918 | 0.7168 | 0.8219 | 0.9077 | 0.9697 | 0.8043 | 0.8247 | 0.6536 | 0.8009 | 0.8346 | 0.8787 | 0.9517 | 0.9077 | 0.8046 | 0.5543 | 0.7730 | 0.5920 | 0.8680 | 0.9473 | 0.9847 | 0.9387 | 0.6631 | 0.6732 | 0.5020 | 0.6755 | 0.7227 | 0.7651 | 0.8844 | 0.8483 | 0.6669 | 0.4485 | 0.6235 | 0.4788 | 0.7277 | 0.8795 | 0.9704 |
0.0782 | 37.0 | 7474 | 0.4938 | 0.7171 | 0.8237 | 0.9081 | 0.9731 | 0.7905 | 0.8343 | 0.6444 | 0.8066 | 0.8508 | 0.8759 | 0.9471 | 0.9091 | 0.8169 | 0.5733 | 0.7636 | 0.5973 | 0.8642 | 0.9479 | 0.9843 | 0.9392 | 0.6621 | 0.6678 | 0.5046 | 0.6731 | 0.7221 | 0.7623 | 0.8866 | 0.8501 | 0.6702 | 0.4521 | 0.6232 | 0.4812 | 0.7300 | 0.8791 | 0.9706 |
0.0758 | 38.0 | 7676 | 0.5168 | 0.7151 | 0.8202 | 0.9069 | 0.9760 | 0.7477 | 0.8282 | 0.6616 | 0.8080 | 0.8463 | 0.8742 | 0.9456 | 0.9139 | 0.8158 | 0.5488 | 0.7629 | 0.5967 | 0.8654 | 0.9481 | 0.9845 | 0.9359 | 0.6395 | 0.6683 | 0.5066 | 0.6746 | 0.7230 | 0.7636 | 0.8883 | 0.8498 | 0.6677 | 0.4439 | 0.6222 | 0.4794 | 0.7285 | 0.8797 | 0.9706 |
0.0745 | 39.0 | 7878 | 0.5100 | 0.7173 | 0.8203 | 0.9081 | 0.9725 | 0.7948 | 0.8194 | 0.6488 | 0.8033 | 0.8417 | 0.8719 | 0.9457 | 0.9111 | 0.8140 | 0.5465 | 0.7558 | 0.5942 | 0.8723 | 0.9471 | 0.9850 | 0.9388 | 0.6622 | 0.6752 | 0.5043 | 0.6732 | 0.7239 | 0.7649 | 0.8869 | 0.8501 | 0.6683 | 0.4472 | 0.6225 | 0.4804 | 0.7295 | 0.8793 | 0.9708 |
0.0719 | 40.0 | 8080 | 0.5147 | 0.7181 | 0.8233 | 0.9083 | 0.9706 | 0.8003 | 0.8253 | 0.6494 | 0.8033 | 0.8491 | 0.8741 | 0.9453 | 0.9125 | 0.8069 | 0.5725 | 0.7652 | 0.5952 | 0.8685 | 0.9493 | 0.9847 | 0.9391 | 0.6636 | 0.6737 | 0.5047 | 0.6761 | 0.7237 | 0.7627 | 0.8859 | 0.8501 | 0.6725 | 0.4535 | 0.6223 | 0.4818 | 0.7291 | 0.8796 | 0.9706 |
0.0731 | 41.0 | 8282 | 0.5221 | 0.7173 | 0.8217 | 0.9083 | 0.9726 | 0.7939 | 0.8299 | 0.6356 | 0.8109 | 0.8419 | 0.8685 | 0.9448 | 0.9132 | 0.8095 | 0.5581 | 0.7649 | 0.6038 | 0.8674 | 0.9478 | 0.9846 | 0.9393 | 0.6625 | 0.6710 | 0.5008 | 0.6714 | 0.7237 | 0.7655 | 0.8859 | 0.8475 | 0.6690 | 0.4523 | 0.6234 | 0.4846 | 0.7296 | 0.8798 | 0.9708 |
0.0723 | 42.0 | 8484 | 0.5245 | 0.7176 | 0.8230 | 0.9084 | 0.9711 | 0.7990 | 0.8275 | 0.6417 | 0.8100 | 0.8396 | 0.8831 | 0.9465 | 0.9126 | 0.8083 | 0.5616 | 0.7649 | 0.6050 | 0.8640 | 0.9497 | 0.9839 | 0.9396 | 0.6645 | 0.6709 | 0.5026 | 0.6707 | 0.7224 | 0.7624 | 0.8864 | 0.8493 | 0.6709 | 0.4531 | 0.6237 | 0.4845 | 0.7304 | 0.8794 | 0.9706 |
0.0706 | 43.0 | 8686 | 0.5327 | 0.7176 | 0.8226 | 0.9081 | 0.9710 | 0.7981 | 0.8270 | 0.6415 | 0.8121 | 0.8409 | 0.8774 | 0.9466 | 0.9109 | 0.8068 | 0.5685 | 0.7562 | 0.6078 | 0.8638 | 0.9498 | 0.9833 | 0.9389 | 0.6618 | 0.6714 | 0.5029 | 0.6722 | 0.7222 | 0.7637 | 0.8858 | 0.8482 |
Clipseg Rd64 Refined
Apache-2.0
CLIPSeg is an image segmentation model based on text and image prompts, supporting zero-shot and one-shot image segmentation tasks.
Image Segmentation
Transformers

C
CIDAS
10.0M
122
RMBG 1.4
Other
BRIA RMBG v1.4 is an advanced background removal model designed for efficiently separating foreground and background in various types of images, suitable for non-commercial use.
Image Segmentation
Transformers

R
briaai
874.12k
1,771
RMBG 2.0
Other
The latest background removal model developed by BRIA AI, capable of effectively separating foreground and background in various images, suitable for large-scale commercial content creation scenarios.
Image Segmentation
Transformers

R
briaai
703.33k
741
Segformer B2 Clothes
MIT
SegFormer model fine-tuned on ATR dataset for clothing and human segmentation
Image Segmentation
Transformers

S
mattmdjaga
666.39k
410
Sam Vit Base
Apache-2.0
SAM is a vision model capable of generating high-quality object masks from input prompts (such as points or boxes), supporting zero-shot segmentation tasks
Image Segmentation
Transformers Other

S
facebook
635.09k
137
Birefnet
MIT
BiRefNet is a deep learning model for high-resolution binary image segmentation, which achieves accurate image segmentation through a bilateral reference network.
Image Segmentation
Transformers

B
ZhengPeng7
626.54k
365
Segformer B1 Finetuned Ade 512 512
Other
SegFormer is a Transformer-based semantic segmentation model fine-tuned on the ADE20K dataset, suitable for image segmentation tasks.
Image Segmentation
Transformers

S
nvidia
560.79k
6
Sam Vit Large
Apache-2.0
SAM is a visual model capable of generating high-quality object masks from input points or bounding boxes, with zero-shot transfer capability.
Image Segmentation
Transformers Other

S
facebook
455.43k
28
Face Parsing
Semantic segmentation model fine-tuned from nvidia/mit-b5 for face parsing tasks
Image Segmentation
Transformers English

F
jonathandinu
398.59k
157
Sam Vit Huge
Apache-2.0
SAM is a vision model capable of generating high-quality object masks based on input prompts, supporting zero-shot transfer to new tasks
Image Segmentation
Transformers Other

S
facebook
324.78k
163
Featured Recommended AI Models