license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-Phoneme
results: []
wav2vec2-Phoneme
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset.
It achieves the following results on the evaluation set:
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
2.1769 |
0.2954 |
100 |
2.1463 |
0.9564 |
2.1285 |
0.5908 |
200 |
2.0959 |
0.9575 |
1.8989 |
0.8863 |
300 |
1.5997 |
0.9022 |
1.1123 |
1.1817 |
400 |
0.6782 |
0.4093 |
0.618 |
1.4771 |
500 |
0.3548 |
0.1544 |
0.4993 |
1.7725 |
600 |
0.3039 |
0.1331 |
0.4425 |
2.0679 |
700 |
0.2688 |
0.1169 |
0.363 |
2.3634 |
800 |
0.2419 |
0.1108 |
0.3507 |
2.6588 |
900 |
0.2220 |
0.1039 |
0.3282 |
2.9542 |
1000 |
0.1999 |
0.1001 |
0.2887 |
3.2496 |
1100 |
0.2044 |
0.0974 |
0.3104 |
3.5451 |
1200 |
0.1950 |
0.0994 |
0.2976 |
3.8405 |
1300 |
0.2005 |
0.0969 |
0.2617 |
4.1359 |
1400 |
0.1907 |
0.0962 |
0.2783 |
4.4313 |
1500 |
0.1886 |
0.0936 |
0.2533 |
4.7267 |
1600 |
0.1845 |
0.0938 |
0.2501 |
5.0222 |
1700 |
0.1759 |
0.0926 |
0.2261 |
5.3176 |
1800 |
0.1789 |
0.0896 |
0.2112 |
5.6130 |
1900 |
0.1824 |
0.0891 |
0.2162 |
5.9084 |
2000 |
0.1715 |
0.0886 |
0.2098 |
6.2038 |
2100 |
0.1761 |
0.0902 |
0.2133 |
6.4993 |
2200 |
0.1747 |
0.0896 |
0.2174 |
6.7947 |
2300 |
0.1753 |
0.0892 |
0.2033 |
7.0901 |
2400 |
0.1729 |
0.0886 |
0.2167 |
7.3855 |
2500 |
0.1749 |
0.0889 |
0.2001 |
7.6809 |
2600 |
0.1650 |
0.0874 |
0.1874 |
7.9764 |
2700 |
0.1656 |
0.0872 |
0.1846 |
8.2718 |
2800 |
0.1674 |
0.0873 |
0.1927 |
8.5672 |
2900 |
0.1595 |
0.0863 |
0.1672 |
8.8626 |
3000 |
0.1552 |
0.0849 |
0.1741 |
9.1581 |
3100 |
0.1659 |
0.0868 |
0.1753 |
9.4535 |
3200 |
0.1615 |
0.0862 |
0.1825 |
9.7489 |
3300 |
0.1623 |
0.0862 |
0.166 |
10.0443 |
3400 |
0.1584 |
0.0865 |
0.1762 |
10.3397 |
3500 |
0.1573 |
0.0850 |
0.1744 |
10.6352 |
3600 |
0.1537 |
0.0863 |
0.1786 |
10.9306 |
3700 |
0.1522 |
0.0840 |
0.1731 |
11.2260 |
3800 |
0.1645 |
0.0851 |
0.1929 |
11.5214 |
3900 |
0.1785 |
0.0851 |
0.2047 |
11.8168 |
4000 |
0.1844 |
0.0860 |
0.255 |
12.1123 |
4100 |
0.2305 |
0.0911 |
0.2771 |
12.4077 |
4200 |
0.2311 |
0.0886 |
0.2742 |
12.7031 |
4300 |
0.2605 |
0.0901 |
0.3879 |
12.9985 |
4400 |
0.2886 |
0.0965 |
0.3655 |
13.2939 |
4500 |
0.2897 |
0.0933 |
0.3693 |
13.5894 |
4600 |
0.2936 |
0.0960 |
0.3999 |
13.8848 |
4700 |
0.2905 |
0.1059 |
0.4286 |
14.1802 |
4800 |
0.3424 |
0.1025 |
0.574 |
14.4756 |
4900 |
0.3891 |
0.1135 |
0.5753 |
14.7710 |
5000 |
0.3912 |
0.1276 |
0.5225 |
15.0665 |
5100 |
0.4248 |
0.1151 |
0.4785 |
15.3619 |
5200 |
0.3332 |
0.1287 |
0.5733 |
15.6573 |
5300 |
0.3999 |
0.1261 |
0.5471 |
15.9527 |
5400 |
0.4144 |
0.1293 |
0.5527 |
16.2482 |
5500 |
0.3580 |
0.1160 |
0.6322 |
16.5436 |
5600 |
0.5158 |
0.1794 |
0.6867 |
16.8390 |
5700 |
0.4731 |
0.1411 |
0.606 |
17.1344 |
5800 |
0.3812 |
0.1305 |
0.5376 |
17.4298 |
5900 |
0.3505 |
0.1206 |
0.5035 |
17.7253 |
6000 |
0.3251 |
0.1199 |
0.469 |
18.0207 |
6100 |
0.3092 |
0.1172 |
0.4544 |
18.3161 |
6200 |
0.3030 |
0.1185 |
0.4288 |
18.6115 |
6300 |
0.2915 |
0.1183 |
0.4457 |
18.9069 |
6400 |
0.2834 |
0.1203 |
0.408 |
19.2024 |
6500 |
0.2765 |
0.1212 |
0.4182 |
19.4978 |
6600 |
0.2741 |
0.1205 |
0.4117 |
19.7932 |
6700 |
0.2705 |
0.1209 |
0.4131 |
20.0886 |
6800 |
0.2725 |
0.1230 |
0.4034 |
20.3840 |
6900 |
0.2713 |
0.1218 |
0.4048 |
20.6795 |
7000 |
0.2707 |
0.1226 |
0.4199 |
20.9749 |
7100 |
0.2695 |
0.1221 |
0.4286 |
21.2703 |
7200 |
0.2709 |
0.1239 |
0.3968 |
21.5657 |
7300 |
0.2699 |
0.1230 |
0.4071 |
21.8612 |
7400 |
0.2705 |
0.1254 |
0.4178 |
22.1566 |
7500 |
0.2701 |
0.1252 |
0.396 |
22.4520 |
7600 |
0.2702 |
0.1252 |
0.4255 |
22.7474 |
7700 |
0.2701 |
0.1249 |
0.4239 |
23.0428 |
7800 |
0.2716 |
0.1254 |
0.4153 |
23.3383 |
7900 |
0.2729 |
0.1264 |
0.4265 |
23.6337 |
8000 |
0.2726 |
0.1264 |
0.4221 |
23.9291 |
8100 |
0.2737 |
0.1266 |
0.4268 |
24.2245 |
8200 |
0.2751 |
0.1269 |
0.4207 |
24.5199 |
8300 |
0.2761 |
0.1273 |
0.3872 |
24.8154 |
8400 |
0.2764 |
0.1273 |
0.4004 |
25.1108 |
8500 |
0.2786 |
0.1276 |
0.4096 |
25.4062 |
8600 |
0.2798 |
0.1276 |
0.4542 |
25.7016 |
8700 |
0.2803 |
0.1274 |
0.4361 |
25.9970 |
8800 |
0.2818 |
0.1276 |
0.4454 |
26.2925 |
8900 |
0.2826 |
0.1277 |
0.4204 |
26.5879 |
9000 |
0.2842 |
0.1281 |
0.4423 |
26.8833 |
9100 |
0.2841 |
0.1280 |
0.4333 |
27.1787 |
9200 |
0.2845 |
0.1282 |
0.4036 |
27.4742 |
9300 |
0.2844 |
0.1281 |
0.4203 |
27.7696 |
9400 |
0.2844 |
0.1281 |
0.4321 |
28.0650 |
9500 |
0.2842 |
0.1281 |
0.4251 |
28.3604 |
9600 |
0.2842 |
0.1281 |
0.4122 |
28.6558 |
9700 |
0.2841 |
0.1281 |
0.424 |
28.9513 |
9800 |
0.2841 |
0.1280 |
0.4404 |
29.2467 |
9900 |
0.2842 |
0.1281 |
0.4174 |
29.5421 |
10000 |
0.2842 |
0.1281 |
0.4432 |
29.8375 |
10100 |
0.2842 |
0.1281 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1.dev0
- Tokenizers 0.19.1