Llama 3.1 Nemotron Nano 8B V1 GGUF
Model Overview
Model Features
Model Capabilities
Use Cases
🚀 Llama-3.1-Nemotron-Nano-8B-v1 GGUF Models
This repository provides the GGUF models of Llama-3.1-Nemotron-Nano-8B-v1, which offers a great tradeoff between model accuracy and efficiency. It is a derivative of Meta Llama-3.1-8B-Instruct, post-trained for reasoning, human chat preferences, and various tasks.
✨ Features
- Ultra-Low-Bit Quantization: Our latest quantization method with IQ-DynamicGate (1 - 2 bit) offers precision-adaptive quantization for ultra-low-bit models, proven effective on Llama-3-8B.
- Multiple Model Formats: Supports BF16, F16, and various quantized models (Q4_K, Q6_K, Q8_0, etc.) to meet different hardware and memory requirements.
- High-Performance Inference: Can be used for high-speed inference with reduced memory on BF16-supported devices, and also suitable for CPU and low-VRAM inference.
- Reasoning Mode: The reasoning mode (ON/OFF) can be controlled via the system prompt, providing flexibility for different use cases.
📦 Installation
This model can be used with the Hugging Face Transformers library. Make sure the transformers package version is 4.44.2
or higher.
pip install transformers>=4.44.2
💻 Usage Examples
Basic Usage
Here is an example of using the model in "Reasoning On" mode:
import torch
import transformers
model_id = "nvidia/Llama-3.1-Nemotron-Nano-8B-v1"
model_kwargs = {"torch_dtype": torch.bfloat16, "device_map": "auto"}
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
tokenizer=tokenizer,
max_new_tokens=32768,
temperature=0.6,
top_p=0.95,
**model_kwargs
)
# Thinking can be "on" or "off"
thinking = "on"
print(pipeline([{"role": "system", "content": f"detailed thinking {thinking}"}, {"role": "user", "content": "Solve x*(sin(x)+2)=0"}]))
Advanced Usage
Here is an example of using the model in "Reasoning Off" mode and pre-filling the assistant response:
import torch
import transformers
model_id = "nvidia/Llama-3.1-Nemotron-Nano-8B-v1"
model_kwargs = {"torch_dtype": torch.bfloat16, "device_map": "auto"}
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id
# Thinking can be "on" or "off"
thinking = "off"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
tokenizer=tokenizer,
max_new_tokens=32768,
do_sample=False,
**model_kwargs
)
print(pipeline([{"role": "system", "content": f"detailed thinking {thinking}"}, {"role": "user", "content": "Solve x*(sin(x)+2)=0"}, {"role":"assistant", "content":"<think>\n</think>"}]))
📚 Documentation
Model Generation Details
This model was generated using llama.cpp at commit 19e899c
.
Ultra-Low-Bit Quantization with IQ-DynamicGate (1 - 2 bit)
Our latest quantization method introduces precision-adaptive quantization for ultra-low-bit models (1 - 2 bit), with benchmark-proven improvements on Llama-3-8B. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.
Benchmark Context
All tests conducted on Llama-3-8B-Instruct using:
- Standard perplexity evaluation pipeline
- 2048-token context window
- Same prompt set across all quantizations
Method
- Dynamic Precision Allocation:
- First/Last 25% of layers → IQ4_XS (selected layers)
- Middle 50% → IQ2_XXS/IQ3_S (increase efficiency)
- Critical Component Protection:
- Embeddings/output layers use Q5_K
- Reduces error propagation by 38% vs standard 1 - 2bit
Quantization Performance Comparison (Llama-3-8B)
Quantization | Standard PPL | DynamicGate PPL | Δ PPL | Std Size | DG Size | Δ Size | Std Speed | DG Speed |
---|---|---|---|---|---|---|---|---|
IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s |
IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s |
IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s |
IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s |
IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s |
Key:
- PPL = Perplexity (lower is better)
- Δ PPL = Percentage change from standard to DynamicGate
- Speed = Inference time (CPU avx2, 2048 token context)
- Size differences reflect mixed quantization overhead
Key Improvements:
- 🔥 IQ1_M shows massive 43.9% perplexity reduction (27.46 → 15.41)
- 🚀 IQ2_S cuts perplexity by 36.9% while adding only 0.2GB
- ⚡ IQ1_S maintains 39.7% better accuracy despite 1-bit quantization
Tradeoffs:
- All variants have modest size increases (0.1 - 0.3GB)
- Inference speeds remain comparable (<5% difference)
When to Use These Models
- 📌 Fitting models into GPU VRAM
- ✔ Memory-constrained deployments
- ✔ Cpu and Edge Devices where 1 - 2bit errors can be tolerated
- ✔ Research into ultra-low-bit quantization
Choosing the Right Model Format
Selecting the correct model format depends on your hardware capabilities and memory constraints.
BF16 (Brain Float 16) – Use if BF16 acceleration is available
- A 16-bit floating-point format designed for faster computation while retaining good precision.
- Provides similar dynamic range as FP32 but with lower memory usage.
- Recommended if your hardware supports BF16 acceleration (check your device's specs).
- Ideal for high-performance inference with reduced memory footprint compared to FP32.
📌 Use BF16 if:
- ✔ Your hardware has native BF16 support (e.g., newer GPUs, TPUs).
- ✔ You want higher precision while saving memory.
- ✔ You plan to requantize the model into another format.
📌 Avoid BF16 if:
- ❌ Your hardware does not support BF16 (it may fall back to FP32 and run slower).
- ❌ You need compatibility with older devices that lack BF16 optimization.
F16 (Float 16) – More widely supported than BF16
- A 16-bit floating-point high precision but with less of range of values than BF16.
- Works on most devices with FP16 acceleration support (including many GPUs and some CPUs).
- Slightly lower numerical precision than BF16 but generally sufficient for inference.
📌 Use F16 if:
- ✔ Your hardware supports FP16 but not BF16.
- ✔ You need a balance between speed, memory usage, and accuracy.
- ✔ You are running on a GPU or another device optimized for FP16 computations.
📌 Avoid F16 if:
- ❌ Your device lacks native FP16 support (it may run slower than expected).
- ❌ You have memory limitations.
Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
- Lower-bit models (Q4_K) → Best for minimal memory usage, may have lower precision.
- Higher-bit models (Q6_K, Q8_0) → Better accuracy, requires more memory.
📌 Use Quantized Models if:
- ✔ You are running inference on a CPU and need an optimized model.
- ✔ Your device has low VRAM and cannot load full-precision models.
- ✔ You want to reduce memory footprint while keeping reasonable accuracy.
📌 Avoid Quantized Models if:
- ❌ You need maximum accuracy (full-precision models are better for this).
- ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).
Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)
These models are optimized for extreme memory efficiency, making them ideal for low-power devices or large-scale deployments where memory is a critical constraint.
- IQ3_XS: Ultra-low-bit quantization (3-bit) with extreme memory efficiency.
- Use case: Best for ultra-low-memory devices where even Q4_K is too large.
- Trade-off: Lower accuracy compared to higher-bit quantizations.
- IQ3_S: Small block size for maximum memory efficiency.
- Use case: Best for low-memory devices where IQ3_XS is too aggressive.
- IQ3_M: Medium block size for better accuracy than IQ3_S.
- Use case: Suitable for low-memory devices where IQ3_S is too limiting.
- Q4_K: 4-bit quantization with block-wise optimization for better accuracy.
- Use case: Best for low-memory devices where Q6_K is too large.
- Q4_0: Pure 4-bit quantization, optimized for ARM devices.
- Use case: Best for ARM-based devices or low-memory environments.
Summary Table: Model Format Selection
Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
---|---|---|---|---|
BF16 | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
F16 | High | High | FP16-supported devices | GPU inference when BF16 isn't available |
Q4_K | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
Q6_K | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
Q8_0 | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
IQ3_XS | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
Q4_0 | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
Included Files & Details
Llama-3.1-Nemotron-Nano-8B-v1-bf16.gguf
- Model weights preserved in BF16.
- Use this if you want to requantize the model into a different format.
- Best if your device supports BF16 acceleration.
Llama-3.1-Nemotron-Nano-8B-v1-f16.gguf
- Model weights stored in F16.
- Use if your device supports FP16, especially if BF16 is not available.
Llama-3.1-Nemotron-Nano-8B-v1-bf16-q8_0.gguf
- Output & embeddings remain in BF16.
- All other layers quantized to Q8_0.
- Use if your device supports BF16 and you want a quantized version.
Llama-3.1-Nemotron-Nano-8B-v1-f16-q8_0.gguf
- Output & embeddings remain in F16.
- All other layers quantized to Q8_0.
Llama-3.1-Nemotron-Nano-8B-v1-q4_k.gguf
- Output & embeddings quantized to Q8_0.
- All other layers quantized to Q4_K.
- Good for CPU inference with limited memory.
Llama-3.1-Nemotron-Nano-8B-v1-q4_k_s.gguf
- Smallest Q4_K variant, using less memory at the cost of accuracy.
- Best for very low-memory setups.
Llama-3.1-Nemotron-Nano-8B-v1-q6_k.gguf
- Output & embeddings quantized to Q8_0.
- All other layers quantized to Q6_K.
Llama-3.1-Nemotron-Nano-8B-v1-q8_0.gguf
- Fully Q8 quantized model for better accuracy.
- Requires more memory but offers higher precision.
Llama-3.1-Nemotron-Nano-8B-v1-iq3_xs.gguf
- IQ3_XS quantization, optimized for extreme memory efficiency.
- Best for ultra-low-memory devices.
Llama-3.1-Nemotron-Nano-8B-v1-iq3_m.gguf
- IQ3_M quantization, offering a medium block size for better accuracy.
- Suitable for low-memory devices.
Llama-3.1-Nemotron-Nano-8B-v1-q4_0.gguf
- Pure Q4_0 quantization, optimized for ARM devices.
- Best for low-memory environments.
- Prefer IQ4_NL for better accuracy.
If you find these models useful
❤ Please click "Like" if you find this useful! Help me test my AI-Powered Network Monitor Assistant with quantum-ready security checks: 👉 Free Network Monitor
💬 How to test: Choose an AI assistant type:
TurboLLM
(GPT-4o-mini)HugLLM
(Hugginface Open-source)TestLLM
(Experimental CPU-only)
What I’m Testing
I’m pushing the limits of small open-source models for AI network monitoring, specifically:
- Function calling against live network services
- How small can a model go while still handling:
- Automated Nmap scans
- Quantum-readiness checks
- Network Monitoring tasks
🟡 TestLLM – Current experimental model (llama.cpp on 2 CPU threads):
- ✅ Zero-configuration setup
- ⏳ 30s load time (slow inference but no API costs)
- 🔧 Help wanted! If you’re into edge-device AI, let’s collaborate!
Other Assistants
🟢 TurboLLM – Uses gpt-4o-mini for:
- Create custom cmd processors to run .net code on Free Network Monitor Agents
- Real-time network diagnostics and monitoring
- Security Audits
- Penetration testing (Nmap/Metasploit)
- 🔑 Get more tokens by logging in or downloading our Free Network Monitor Agent with integrated AI Assistant
🔵 HugLLM – Latest Open-source models:
- 🌐 Runs on Hugging Face Inference API
Example commands to you could test:
"Give me info on my websites SSL certificate"
"Check if my server is using quantum safe encyption for communication"
"Run a comprehensive security audit on my server"
- '"Create a cmd processor to .. (what ever you want)" Note you need to install a Free Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!
Model Overview
Llama-3.1-Nemotron-Nano-8B-v1 is a large language model (LLM) which is a derivative of Meta Llama-3.1-8B-Instruct (AKA the reference model). It is a reasoning model that is post trained for reasoning, human chat preferences, and tasks, such as RAG and tool calling.
Llama-3.1-Nemotron-Nano-8B-v1 is a model which offers a great tradeoff between model accuracy and efficiency. It is created from Llama 3.1 8B Instruct and offers improvements in model accuracy. The model fits on a single RTX GPU and can be used locally. The model supports a context length of 128K.
This model underwent a multi-phase post-training process to enhance both its reasoning and non-reasoning capabilities. This includes a supervised fine-tuning stage for Math, Code, Reasoning, and Tool Calling as well as multiple reinforcement learning (RL) stages using REINFORCE (RLOO) and Online Reward-aware Preference Optimization (RPO) algorithms for both chat and instruction-following. The final model checkpoint is obtained after merging the final SFT and Online RPO checkpoints. Improved using Qwen.
This model is part of the Llama Nemotron Collection. You can find the other model(s) in this family here: Llama-3.3-Nemotron-Super-49B-v1
This model is ready for commercial use.
License/Terms of Use
GOVERNING TERMS: Your use of this model is governed by the NVIDIA Open Model License. Additional Information: Llama 3.1 Community License Agreement. Built with Llama.
Model Developer: NVIDIA
Model Dates: Trained between August 2024 and March 2025
Data Freshness: The pretraining data has a cutoff of 2023 per Meta Llama 3.1 8B
Use Case
Developers designing AI Agent systems, chatbots, RAG systems, and other AI-powered applications. Also suitable for typical instruction-following tasks. Balance of model accuracy and compute efficiency (the model fits on a single RTX GPU and can be used locally).
Release Date
3/18/2025
References
- [2505.00949] Llama-Nemotron: Efficient Reasoning Models
- [2502.00203] Reward-aware Preference Optimization: A Unified Mathematical Framework for Model Alignment
Model Architecture
Architecture Type: Dense decoder-only Transformer model
Network Architecture: Llama 3.1 8B Instruct
Input
- Input Type: Text
- Input Format: String
- Input Parameters: One-Dimensional (1D)
- Other Properties Related to Input: Context length up to 131,072 tokens
Output
- Output Type: Text
- Output Format: String
- Output Parameters: One-Dimensional (1D)
- Other Properties Related to Output: Context length up to 131,072 tokens
Model Version
1.0 (3/18/2025)
Software Integration
- Runtime Engine: NeMo 24.12
- Recommended Hardware Microarchitecture Compatibility:
- NVIDIA Hopper
- NVIDIA Ampere
Quick Start and Usage Recommendations
- Reasoning mode (ON/OFF) is controlled via the system prompt, which must be set as shown in the example below. All instructions should be contained within the user prompt
- We recommend setting temperature to
0.6
, and Top P to0.95
for Reasoning ON mode - We recommend using greedy decoding for Reasoning OFF mode
- We have provided a list of prompts to use for evaluation for each benchmark where a specific template is required
- The model will include
<think></think>
if no reasoning was necessary in Reasoning ON model, this is expected behaviour
You can try this model out through the preview API, using this link: Llama-3.1-Nemotron-Nano-8B-v1.
See the snippet below for usage with Hugging Face Transformers library. Reasoning mode (ON/OFF) is controlled via system prompt. Please see the example below.
Our code requires the transformers package version to be 4.44.2
or higher.
Inference
Engine: Transformers Test Hardware:
- BF16:
- 1x RTX 50 Series GPUs
- 1x RTX 40 Series GPUs
- 1x RTX 30 Series GPUs
- 1x H100-80GB GPU
- 1x A100-80GB GPU
Preferred/Supported] Operating System(s): Linux
Training Datasets
A large variety of training data was used for the post-training pipeline, including manually annotated data and synthetic data.
The data for the multi-stage post-training phases for improvements in Code, Math, and Reasoning is a compilation of SFT and RL data that supports improvements of math, code, general reasoning, and instruction following capabilities of the original Llama instruct model.
Prompts have been sourced from either public and open corpus or synthetically generated. Responses were synthetically generated by a variety of models, with some prompts containing responses for both Reasoning On and Off modes, to train the model to distinguish between two modes.
Data Collection for Training Datasets:
- Hybrid: Automated, Human, Synthetic
Data Labeling for Training Datasets:
- N/A
Evaluation Datasets
We used the datasets listed below to evaluate Llama-3.1-Nemotron-Nano-8B-v1.
Data Collection for Evaluation Datasets: Hybrid: Human/Synthetic
Data Labeling for Evaluation Datasets: Hybrid: Human/Synthetic/Automatic
Evaluation Results
These results contain both “Reasoning On”, and “Reasoning Off”. We recommend using temperature=0.6
, top_p=0.95
for “Reasoning On” mode, and greedy decoding for “Reasoning Off” mode. All evaluations are done with 32k sequence length. We run the benchmarks up to 16 times and average the scores to be more accurate.
NOTE: Where applicable, a Prompt Template will be provided. While completing benchmarks, please ensure that you are parsing for the correct output format as per the provided prompt in order to reproduce the benchmarks seen below.
MT-Bench
Reasoning Mode | Score |
---|---|
Reasoning Off | 7.9 |
Reasoning On | 8.1 |
MATH500
Reasoning Mode | pass@1 |
---|---|
Reasoning Off | 36.6% |
Reasoning On | 95.4% |
User Prompt Template:
"Below is a math question. I want you to reason through the steps and then give a final answer. Your final answer should be in \boxed{}.\nQuestion: {question}"
AIME25
Reasoning Mode | pass@1 |
---|---|
Reasoning Off | 0% |
Reasoning On | 47.1% |
User Prompt Template:
"Below is a math question. I want you to reason through the steps and then give a final answer. Your final answer should be in \boxed{}.\nQuestion: {question}"
GPQA-D
Reasoning Mode | pass@1 |
---|---|
Reasoning Off | 39.4% |
Reasoning On | 54.1% |
User Prompt Template:
"What is the correct answer to this question: {question}\nChoices:\nA. {option_A}\nB. {option_B}\nC. {option_C}\nD. {option_D}\nLet's think step by step, and put the final answer (should be a single letter A, B, C, or D) into a \boxed{}"
IFEval Average
Reasoning Mode | Strict:Prompt | Strict:Instruction |
---|---|---|
Reasoning Off | 74.7% | 82.1% |
Reasoning On | 71.9% | 79.3% |
BFCL v2 Live
Reasoning Mode | Score |
---|---|
Reasoning Off | 63.9% |
Reasoning On | 63.6% |
User Prompt Template:
<AVAILABLE_TOOLS>{functions}</AVAILABLE_TOOLS>
{user_prompt}
MBPP 0-shot
Reasoning Mode | pass@1 |
---|---|
Reasoning Off | 66.1% |
Reasoning On | 84.6% |
User Prompt Template:
You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
@@ Instruction
Here is the given problem and test examples:
{prompt}
Please use the python programming language to solve this problem.
Please make sure that your code includes the functions from the test samples and that the input and output formats of these functions match the test samples.
Please return all completed codes in one code block.
This code block should be in the following format:
```python
# Your codes here
### Ethical Considerations
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
For more detailed information on ethical considerations for this model, please see the Model Card++ [Explainability](explainability.md), [Bias](bias.md), [Safety & Security](safety.md), and [Privacy](privacy.md) Subcards.
Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
### Citation
@misc{bercovich2025llamanemotronefficientreasoningmodels, title={Llama-Nemotron: Efficient Reasoning Models}, author={Akhiad Bercovich and Itay Levy and Izik Golan and Mohammad Dabbah and Ran El-Yaniv and Omri Puny and Ido Galil and Zach Moshe and Tomer Ronen and Najeeb Nabwani and Ido Shahaf and Oren Tropp and Ehud Karpas and Ran Zilberstein and Jiaqi Zeng and Soumye Singhal and Alexander Bukharin and Yian Zhang and Tugrul Konuk and Gerald Shen and Ameya Sunil Mahabaleshwarkar and Bilal Kartal and Yoshi Suhara and Olivier Delalleau and Zijia Chen and Zhilin Wang and David Mosallanezhad and Adi Renduchintala and Haifeng Qian and Dima Rekesh and Fei Jia and Somshubra Majumdar and Vahid Noroozi and Wasi Uddin Ahmad and Sean Narenthiran and Aleksander Ficek and Mehrzad Samadi and Jocelyn Huang and Siddhartha Jain and Igor Gitman and Ivan Moshkov and Wei Du and Shubham Toshniwal and George Armstrong and Branislav Kisacanin and Matvei Novikov and Daria Gitman and Evelina Bakhturina and Jane Polak Scowcroft and John Kamalu and Dan Su and Kezhi Kong and Markus Kliegl and Rabeeh Karimi and Ying Lin and Sanjeev Satheesh and Jupinder Parmar and Pritam Gundecha and Brandon Norick and Joseph Jennings and Shrimai Prabhumoye and Syeda Nahida Akter and Mostofa Patwary and Abhinav Khattar and Deepak Narayanan and Roger Waleffe and Jimmy Zhang and Bor-Yiing Su and Guyue Huang and Terry Kong and Parth Chadha and Sahil Jain and Christine Harvey and Elad Segal and Jining Huang and Sergey Kashirsky and Robert McQueen and Izzy Putterman and George Lam and Arun Venkatesan and Sherry Wu and Vinh Nguyen and Manoj Kilaru and Andrew Wang and Anna Warno and Abhilash Somasamudramath and Sandip Bhaskar and Maka Dong and Nave Assaf and Shahar Mor and Omer Ullman Argov and Scot Junkin and Oleksandr Romanenko and Pedro Larroy and Monika Katariya and Marco Rovinelli and Viji Balas and Nicholas Edelman and Anahita Bhiwandiwalla and Muthu Subramaniam and Smita Ithape and Karthik Ramamoorthy and Yuting Wu and Suguna Varshini Velury and Omri Almog and Joyjit Daw and Denys Fridman and Erick Galinkin and Michael Evans and Katherine Luna and Leon Derczynski and Nikki Pope and Eileen Long and Seth Schneider and Guillermo Siman and Tomasz Grzegorzek and Pablo Ribalta and Monika Katariya and Joey Conway and Trisha Saar and Ann Guan and Krzysztof Pawelec and Shyamala Prayaga and Oleksii Kuchaiev and Boris Ginsburg and Oluwatobi Olabiyi and Kari Briski and Jonathan Cohen and Bryan Catanzaro and Jonah Alben and Yonatan Geifman and Eric Chung and Chris Alexiuk}, year={2025}, eprint={2505.00949}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.00949}, }

