đ ConvNeXT (base-sized model)
A ConvNeXT model trained on ImageNet-1k at 224x224 resolution, aiming to provide high - performance image classification.
đ Quick Start
ConvNeXT is a powerful model for image classification. You can use the raw model for this task, and also find fine - tuned versions on the model hub according to your needs.
⨠Features
- Innovative Design: ConvNeXT is a pure convolutional model (ConvNet) inspired by Vision Transformers, with a design that "modernizes" the ResNet by taking the Swin Transformer as inspiration.
- High Performance: It claims to outperform Vision Transformers in image classification tasks.
đ Documentation
Model description
ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them. The authors started from a ResNet and "modernized" its design by taking the Swin Transformer as inspiration.

Intended uses & limitations
You can use the raw model for image classification. See the model hub to look for fine - tuned versions on a task that interests you.
How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
from transformers import ConvNextImageProcessor, ConvNextForImageClassification
import torch
from datasets import load_dataset
dataset = load_dataset("huggingface/cats-image")
image = dataset["test"]["image"][0]
processor = ConvNextImageProcessor.from_pretrained("facebook/convnext-base-224")
model = ConvNextForImageClassification.from_pretrained("facebook/convnext-base-224")
inputs = processor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label]),
For more code examples, we refer to the documentation.
BibTeX entry and citation info
@article{DBLP:journals/corr/abs-2201-03545,
author = {Zhuang Liu and
Hanzi Mao and
Chao{-}Yuan Wu and
Christoph Feichtenhofer and
Trevor Darrell and
Saining Xie},
title = {A ConvNet for the 2020s},
journal = {CoRR},
volume = {abs/2201.03545},
year = {2022},
url = {https://arxiv.org/abs/2201.03545},
eprinttype = {arXiv},
eprint = {2201.03545},
timestamp = {Thu, 20 Jan 2022 14:21:35 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
đ License
This model is licensed under the Apache - 2.0 license.
Property |
Details |
Model Type |
ConvNeXT (base - sized model) |
Training Data |
ImageNet - 1k |
Tags |
vision, image - classification |