đ YKXBCi/vit-base-patch16-224-in21k-ucSat
This model is a fine - tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves certain results on the evaluation set, which can help users in relevant tasks.
đ Quick Start
This model is a fine - tuned version of google/vit-base-patch16-224-in21k on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.3216
- Train Accuracy: 0.9960
- Train Top - 3 - accuracy: 1.0
- Validation Loss: 1.3683
- Validation Accuracy: 0.9688
- Validation Top - 3 - accuracy: 0.9931
- Epoch: 4
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
đ§ Technical Details
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e - 05, 'decay_steps': 275, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e - 08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
Training results
Train Loss |
Train Accuracy |
Train Top - 3 - accuracy |
Validation Loss |
Validation Accuracy |
Validation Top - 3 - accuracy |
Epoch |
2.7376 |
0.5375 |
0.7284 |
2.3789 |
0.8958 |
0.9757 |
0 |
2.1030 |
0.9449 |
0.9972 |
1.8664 |
0.9479 |
0.9896 |
1 |
1.6719 |
0.9812 |
1.0 |
1.5763 |
0.9618 |
0.9931 |
2 |
1.4357 |
0.9926 |
1.0 |
1.4201 |
0.9688 |
0.9931 |
3 |
1.3216 |
0.9960 |
1.0 |
1.3683 |
0.9688 |
0.9931 |
4 |
Framework versions
- Transformers 4.18.0
- TensorFlow 2.6.0
- Datasets 2.1.0
- Tokenizers 0.12.1
đ License
This project is licensed under the Apache - 2.0 license.