🚀 vc-bantai-vit-withoutAMBI-adunest-v1
This model is a fine - tuned version of google/vit-base-patch16-224-in21k on the imagefolder
dataset. It offers high - performance image classification capabilities, achieving remarkable results on the evaluation set.
📚 Documentation
Model Information
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e - 08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
No log |
0.23 |
100 |
0.3365 |
0.8581 |
No log |
0.45 |
200 |
0.3552 |
0.8472 |
No log |
0.68 |
300 |
0.3165 |
0.8581 |
No log |
0.91 |
400 |
0.2882 |
0.8690 |
0.3813 |
1.13 |
500 |
0.2825 |
0.8745 |
0.3813 |
1.36 |
600 |
0.2686 |
0.9007 |
0.3813 |
1.59 |
700 |
0.2381 |
0.9017 |
0.3813 |
1.81 |
800 |
0.3643 |
0.8734 |
0.3813 |
2.04 |
900 |
0.2873 |
0.8930 |
0.2736 |
2.27 |
1000 |
0.2236 |
0.9039 |
0.2736 |
2.49 |
1100 |
0.2652 |
0.8723 |
0.2736 |
2.72 |
1200 |
0.2793 |
0.8952 |
0.2736 |
2.95 |
1300 |
0.2158 |
0.8974 |
0.2736 |
3.17 |
1400 |
0.2410 |
0.8886 |
0.2093 |
3.4 |
1500 |
0.2262 |
0.9017 |
0.2093 |
3.63 |
1600 |
0.2110 |
0.9214 |
0.2093 |
3.85 |
1700 |
0.2048 |
0.9138 |
0.2093 |
4.08 |
1800 |
0.2044 |
0.9127 |
0.2093 |
4.31 |
1900 |
0.2591 |
0.9007 |
0.1764 |
4.54 |
2000 |
0.2466 |
0.8952 |
0.1764 |
4.76 |
2100 |
0.2554 |
0.9017 |
0.1764 |
4.99 |
2200 |
0.2145 |
0.9203 |
0.1764 |
5.22 |
2300 |
0.3187 |
0.9039 |
0.1764 |
5.44 |
2400 |
0.3336 |
0.9050 |
0.1454 |
5.67 |
2500 |
0.2542 |
0.9127 |
0.1454 |
5.9 |
2600 |
0.2796 |
0.8952 |
0.1454 |
6.12 |
2700 |
0.2410 |
0.9181 |
0.1454 |
6.35 |
2800 |
0.2503 |
0.9148 |
0.1454 |
6.58 |
2900 |
0.2966 |
0.8996 |
0.1216 |
6.8 |
3000 |
0.1978 |
0.9312 |
0.1216 |
7.03 |
3100 |
0.2297 |
0.9214 |
0.1216 |
7.26 |
3200 |
0.2768 |
0.9203 |
0.1216 |
7.48 |
3300 |
0.3356 |
0.9083 |
0.1216 |
7.71 |
3400 |
0.3415 |
0.9138 |
0.1038 |
7.94 |
3500 |
0.2398 |
0.9061 |
0.1038 |
8.16 |
3600 |
0.3347 |
0.8963 |
0.1038 |
8.39 |
3700 |
0.2199 |
0.9203 |
0.1038 |
8.62 |
3800 |
0.2943 |
0.9061 |
0.1038 |
8.84 |
3900 |
0.2561 |
0.9181 |
0.0925 |
9.07 |
4000 |
0.4170 |
0.8777 |
0.0925 |
9.3 |
4100 |
0.3638 |
0.8974 |
0.0925 |
9.52 |
4200 |
0.3233 |
0.9094 |
0.0925 |
9.75 |
4300 |
0.3496 |
0.9203 |
0.0925 |
9.98 |
4400 |
0.3621 |
0.8996 |
0.0788 |
10.2 |
4500 |
0.3260 |
0.9116 |
0.0788 |
10.43 |
4600 |
0.3979 |
0.9061 |
0.0788 |
10.66 |
4700 |
0.3301 |
0.8974 |
0.0788 |
10.88 |
4800 |
0.2197 |
0.9105 |
0.0788 |
11.11 |
4900 |
0.3306 |
0.9148 |
0.0708 |
11.34 |
5000 |
0.3318 |
0.9181 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
📄 License
This model is licensed under the Apache - 2.0 license.