đ Imene/vit-base-patch16-224-in21k-wwwwwi
This model is a fine - tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It provides evaluation results on the dataset, which can be used for reference in relevant tasks.
đ Quick Start
This model is a fine - tuned version of google/vit-base-patch16-224-in21k on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.2187
- Train Accuracy: 0.5652
- Train Top - 3 - accuracy: 0.7611
- Validation Loss: 3.8221
- Validation Accuracy: 0.2540
- Validation Top - 3 - accuracy: 0.4409
- Epoch: 9
đ Documentation
Model Information
Property |
Details |
Model Name |
Imene/vit-base-patch16-224-in21k-wwwwwi |
Model Type |
Fine - tuned version of google/vit-base-patch16-224-in21k |
Training Data |
Unknown |
Training Procedure
Training Hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e - 05, 'decay_steps': 4920, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e - 08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
Training Results
Train Loss |
Train Accuracy |
Train Top - 3 - accuracy |
Validation Loss |
Validation Accuracy |
Validation Top - 3 - accuracy |
Epoch |
5.3476 |
0.0283 |
0.0716 |
5.1306 |
0.0483 |
0.1240 |
0 |
4.9357 |
0.0914 |
0.2057 |
4.7998 |
0.1158 |
0.2385 |
1 |
4.6155 |
0.1641 |
0.3230 |
4.5616 |
0.1430 |
0.2891 |
2 |
4.3325 |
0.2269 |
0.4188 |
4.3480 |
0.1722 |
0.3391 |
3 |
4.0702 |
0.2915 |
0.4984 |
4.1662 |
0.2042 |
0.3886 |
4 |
3.8262 |
0.3638 |
0.5758 |
4.0416 |
0.2296 |
0.4067 |
5 |
3.6117 |
0.4258 |
0.6415 |
3.9451 |
0.2329 |
0.4234 |
6 |
3.4324 |
0.4855 |
0.6956 |
3.8690 |
0.2499 |
0.4397 |
7 |
3.2991 |
0.5320 |
0.7376 |
3.8351 |
0.2553 |
0.4359 |
8 |
3.2187 |
0.5652 |
0.7611 |
3.8221 |
0.2540 |
0.4409 |
9 |
Framework Versions
- Transformers 4.21.2
- TensorFlow 2.8.2
- Datasets 2.4.0
- Tokenizers 0.12.1
đ License
This model is licensed under the Apache 2.0 license.