🚀 dit-base-finetuned-brs
This model is a fine - tuned version of microsoft/dit-base on the imagefolder dataset, achieving high performance in image classification tasks.
🚀 Quick Start
This model is a fine - tuned version of microsoft/dit-base on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8748
- Accuracy: 0.8824
- F1: 0.8571
- Precision (ppv): 0.8571
- Recall (sensitivity): 0.8571
- Specificity: 0.9
- Npv: 0.9
- Auc: 0.8786
📚 Documentation
Model Information
Property |
Details |
Model Type |
dit - base - finetuned - brs |
Training Data |
imagefolder |
Metrics |
Accuracy, F1 |
Training Procedure
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e - 05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training Results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
F1 |
Precision (ppv) |
Recall (sensitivity) |
Specificity |
Npv |
Auc |
0.6624 |
6.25 |
100 |
0.5548 |
0.8235 |
0.7692 |
0.8333 |
0.7143 |
0.9 |
0.8182 |
0.8071 |
0.5201 |
12.49 |
200 |
0.4617 |
0.8824 |
0.8571 |
0.8571 |
0.8571 |
0.9 |
0.9 |
0.8786 |
0.5172 |
18.74 |
300 |
0.4249 |
0.8235 |
0.8000 |
0.75 |
0.8571 |
0.8 |
0.8889 |
0.8286 |
0.4605 |
24.98 |
400 |
0.3172 |
0.8235 |
0.7692 |
0.8333 |
0.7143 |
0.9 |
0.8182 |
0.8071 |
0.4894 |
31.25 |
500 |
0.4466 |
0.8235 |
0.7692 |
0.8333 |
0.7143 |
0.9 |
0.8182 |
0.8071 |
0.3694 |
37.49 |
600 |
0.5077 |
0.8235 |
0.7692 |
0.8333 |
0.7143 |
0.9 |
0.8182 |
0.8071 |
0.6172 |
43.74 |
700 |
0.5722 |
0.7647 |
0.7143 |
0.7143 |
0.7143 |
0.8 |
0.8 |
0.7571 |
0.3671 |
49.98 |
800 |
0.7006 |
0.7647 |
0.6667 |
0.8 |
0.5714 |
0.9 |
0.75 |
0.7357 |
0.4109 |
56.25 |
900 |
0.4410 |
0.8235 |
0.7692 |
0.8333 |
0.7143 |
0.9 |
0.8182 |
0.8071 |
0.3198 |
62.49 |
1000 |
0.7226 |
0.8235 |
0.7692 |
0.8333 |
0.7143 |
0.9 |
0.8182 |
0.8071 |
0.4283 |
68.74 |
1100 |
0.8089 |
0.8235 |
0.7692 |
0.8333 |
0.7143 |
0.9 |
0.8182 |
0.8071 |
0.3273 |
74.98 |
1200 |
0.9059 |
0.7647 |
0.6667 |
0.8 |
0.5714 |
0.9 |
0.75 |
0.7357 |
0.3237 |
81.25 |
1300 |
0.8520 |
0.8235 |
0.7692 |
0.8333 |
0.7143 |
0.9 |
0.8182 |
0.8071 |
0.2014 |
87.49 |
1400 |
0.9183 |
0.7647 |
0.6667 |
0.8 |
0.5714 |
0.9 |
0.75 |
0.7357 |
0.3204 |
93.74 |
1500 |
0.6769 |
0.8824 |
0.8571 |
0.8571 |
0.8571 |
0.9 |
0.9 |
0.8786 |
0.1786 |
99.98 |
1600 |
0.8748 |
0.8824 |
0.8571 |
0.8571 |
0.8571 |
0.9 |
0.9 |
0.8786 |
Framework Versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1