🚀 uisikdag/indoorsceneclas_v8
This project is an image - classification model based on Ultralytics and YOLOv8, which can classify various indoor scenes.
🚀 Quick Start
Install Dependencies
First, you need to install the required libraries. You can use the following command to install ultralyticsplus
and ultralytics
:
pip install ultralyticsplus==0.0.23 ultralytics==8.0.21
Load the Model and Make Predictions
After the installation is complete, you can load the model and perform predictions using the following Python code:
from ultralyticsplus import YOLO, postprocess_classify_output
model = YOLO('uisikdag/indoorsceneclas_v8')
model.overrides['conf'] = 0.25
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
results = model.predict(image)
print(results[0].probs)
processed_result = postprocess_classify_output(model, result=results[0])
print(processed_result)
✨ Features
- Rich Label Support: This model supports a wide range of indoor scene labels, including but not limited to
airport_inside
, artstudio
, auditorium
, etc.
- Easy to Use: With the help of
ultralyticsplus
, you can quickly load the model and perform predictions.
📦 Installation
To use this model, you need to install ultralyticsplus
and ultralytics
. You can use the following command:
pip install ultralyticsplus==0.0.23 ultralytics==8.0.21
💻 Usage Examples
Basic Usage
from ultralyticsplus import YOLO, postprocess_classify_output
model = YOLO('uisikdag/indoorsceneclas_v8')
model.overrides['conf'] = 0.25
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
results = model.predict(image)
print(results[0].probs)
processed_result = postprocess_classify_output(model, result=results[0])
print(processed_result)
📚 Documentation
Supported Labels
The model supports the following labels:
['airport_inside', 'artstudio', 'auditorium', 'bakery', 'bookstore', 'bowling', 'buffet', 'casino', 'children_room', 'church_inside', 'classroom', 'cloister', 'closet', 'clothingstore', 'computerroom', 'concert_hall', 'corridor', 'deli', 'dentaloffice', 'dining_room', 'elevator', 'fastfood_restaurant', 'florist', 'gameroom', 'garage', 'greenhouse', 'grocerystore', 'gym', 'hairsalon', 'hospitalroom', 'inside_bus', 'inside_subway', 'jewelleryshop', 'kindergarden', 'kitchen', 'laboratorywet', 'laundromat', 'library', 'livingroom', 'lobby', 'locker_room', 'mall', 'meeting_room', 'movietheater', 'museum', 'nursery', 'office', 'operating_room', 'pantry', 'poolinside', 'prisoncell', 'restaurant', 'restaurant_kitchen', 'shoeshop', 'stairscase', 'studiomusic', 'subway', 'toystore', 'trainstation', 'tv_studio', 'videostore', 'waitingroom', 'warehouse', 'winecellar']
Dataset
The dataset used in this project can be found here.
Model Metrics
Property |
Details |
Model Type |
Image Classification |
Top1 Accuracy |
0.02246 |
Top5 Accuracy |
0.08986 |