đ segformer-b5-finetuned-human-parsing
This model is a fine - tuned version of nvidia/mit-b5 on the None dataset. It specializes in image segmentation, particularly for human parsing, and offers high - precision results in relevant tasks.
đ Quick Start
This model is ready to use for human parsing tasks. You can directly load it from the Hugging Face model hub and start making inferences.
đ Documentation
Model Performance
It achieves the following results on the evaluation set:
- Loss: 0.2292
- Mean Iou: 0.6258
- Mean Accuracy: 0.7547
- Overall Accuracy: 0.8256
- Accuracy Background: nan
- Accuracy Hat: 0.8561
- Accuracy Hair: 0.8974
- Accuracy Sunglasses: 0.7540
- Accuracy Upper - clothes: 0.8553
- Accuracy Skirt: 0.7026
- Accuracy Pants: 0.8913
- Accuracy Dress: 0.7525
- Accuracy Belt: 0.4251
- Accuracy Left - shoe: 0.6014
- Accuracy Right - shoe: 0.6374
- Accuracy Face: 0.9094
- Accuracy Left - leg: 0.8452
- Accuracy Right - leg: 0.8343
- Accuracy Left - arm: 0.8506
- Accuracy Right - arm: 0.8287
- Accuracy Bag: 0.8232
- Accuracy Scarf: 0.3662
- Iou Background: 0.0
- Iou Hat: 0.7625
- Iou Hair: 0.8171
- Iou Sunglasses: 0.6400
- Iou Upper - clothes: 0.7700
- Iou Skirt: 0.6211
- Iou Pants: 0.7788
- Iou Dress: 0.5512
- Iou Belt: 0.3564
- Iou Left - shoe: 0.5032
- Iou Right - shoe: 0.5381
- Iou Face: 0.8294
- Iou Left - leg: 0.7412
- Iou Right - leg: 0.7591
- Iou Left - arm: 0.7579
- Iou Right - arm: 0.7705
- Iou Bag: 0.7729
- Iou Scarf: 0.2956
Training Procedure
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e - 05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 15
Training Results
Training Loss |
Epoch |
Step |
Validation Loss |
Mean Iou |
Mean Accuracy |
Overall Accuracy |
Accuracy Background |
Accuracy Hat |
Accuracy Hair |
Accuracy Sunglasses |
Accuracy Upper - clothes |
Accuracy Skirt |
Accuracy Pants |
Accuracy Dress |
Accuracy Belt |
Accuracy Left - shoe |
Accuracy Right - shoe |
Accuracy Face |
Accuracy Left - leg |
Accuracy Right - leg |
Accuracy Left - arm |
Accuracy Right - arm |
Accuracy Bag |
Accuracy Scarf |
Iou Background |
Iou Hat |
Iou Hair |
Iou Sunglasses |
Iou Upper - clothes |
Iou Skirt |
Iou Pants |
Iou Dress |
Iou Belt |
Iou Left - shoe |
Iou Right - shoe |
Iou Face |
Iou Left - leg |
Iou Right - leg |
Iou Left - arm |
Iou Right - arm |
Iou Bag |
Iou Scarf |
1.1597 |
0.04 |
20 |
1.5815 |
0.1179 |
0.1991 |
0.4296 |
nan |
0.0060 |
0.6905 |
0.0 |
0.7657 |
0.0108 |
0.6431 |
0.2946 |
0.0 |
0.0288 |
0.0366 |
0.1480 |
0.0025 |
0.5692 |
0.0096 |
0.0259 |
0.1537 |
0.0 |
0.0 |
0.0051 |
0.4253 |
0.0 |
0.5199 |
0.0103 |
0.3388 |
0.1700 |
0.0 |
0.0258 |
0.0338 |
0.0895 |
0.0025 |
0.3162 |
0.0094 |
0.0253 |
0.1495 |
0.0 |
0.6963 |
0.08 |
40 |
0.8073 |
0.1759 |
0.2719 |
0.4628 |
nan |
0.0015 |
0.8699 |
0.0 |
0.4736 |
0.4932 |
0.5141 |
0.6775 |
0.0 |
0.0062 |
0.1038 |
0.5301 |
0.0916 |
0.5071 |
0.0092 |
0.0549 |
0.2889 |
0.0 |
0.0 |
0.0015 |
0.6169 |
0.0 |
0.4242 |
0.2202 |
0.3522 |
0.2251 |
0.0 |
0.0062 |
0.0904 |
0.4914 |
0.0852 |
0.3160 |
0.0092 |
0.0541 |
0.2731 |
0.0 |
0.5786 |
0.12 |
60 |
0.6136 |
0.2538 |
0.3642 |
0.4679 |
nan |
0.0180 |
0.8122 |
0.0 |
0.1998 |
0.0000 |
0.6621 |
0.8592 |
0.0 |
0.1440 |
0.2772 |
0.8381 |
0.4032 |
0.6068 |
0.4182 |
0.3097 |
0.6434 |
0.0 |
0.0 |
0.0179 |
0.6760 |
0.0 |
0.1951 |
0.0000 |
0.5471 |
0.2218 |
0.0 |
0.1147 |
0.2032 |
0.6403 |
0.3189 |
0.4204 |
0.3505 |
0.2947 |
0.5676 |
0.0 |
0.324 |
0.16 |
80 |
0.4282 |
0.2893 |
0.4044 |
0.6041 |
nan |
0.0147 |
0.7890 |
0.0 |
0.8222 |
0.7984 |
0.6646 |
0.1038 |
0.0 |
0.0896 |
0.3308 |
0.8277 |
0.4099 |
0.6839 |
0.2401 |
0.5474 |
0.5521 |
0.0 |
0.0 |
0.0147 |
0.6800 |
0.0 |
0.6159 |
0.3049 |
0.5913 |
0.0938 |
0.0 |
0.0802 |
0.2394 |
0.6598 |
0.3178 |
0.4504 |
0.2288 |
0.4189 |
0.5113 |
0.0 |
0.297 |
0.2 |
100 |
0.4020 |
0.3034 |
0.4230 |
0.6332 |
nan |
0.0048 |
0.8076 |
0.0080 |
0.9042 |
0.6567 |
0.8036 |
0.0317 |
0.0 |
0.0481 |
0.5298 |
0.7728 |
0.2589 |
0.7232 |
0.5941 |
0.3839 |
0.6643 |
0.0 |
0.0 |
0.0048 |
0.6708 |
0.0080 |
0.6300 |
0.3836 |
0.5929 |
0.0314 |
0.0 |
0.0441 |
0.3152 |
0.6726 |
0.2420 |
0.4745 |
0.4532 |
0.3631 |
0.5759 |
0.0 |
0.2608 |
0.24 |
120 |
0.3538 |
0.3444 |
0.4554 |
0.6504 |
nan |
0.2922 |
0.8078 |
0.0753 |
0.8472 |
0.0425 |
0.6961 |
0.6197 |
0.0 |
0.2550 |
0.3074 |
0.8020 |
0.5636 |
0.6895 |
0.3779 |
0.6930 |
0.6734 |
0.0 |
0.0 |
0.2757 |
0.6940 |
0.0747 |
0.6457 |
0.0419 |
0.6098 |
0.3611 |
0.0 |
0.1849 |
0.2412 |
0.7038 |
0.4513 |
0.5038 |
0.3439 |
0.4760 |
0.5915 |
0.0 |
0.3306 |
0.28 |
140 |
0.3281 |
0.3562 |
0.4736 |
0.6560 |
nan |
0.4111 |
0.8576 |
0.1953 |
0.8081 |
0.6916 |
0.7888 |
0.3489 |
0.0 |
0.0809 |
0.3612 |
0.8132 |
0.0622 |
0.7078 |
0.6328 |
0.5437 |
0.7482 |
0.0 |
0.0 |
0.3895 |
0.7227 |
0.1857 |
0.6777 |
0.3750 |
0.6015 |
0.2749 |
0.0 |
0.0740 |
0.2602 |
0.7070 |
0.0612 |
0.4348 |
0.5114 |
0.4966 |
0.6385 |
0.0 |
0.364 |
0.32 |
160 |
0.3368 |
0.3689 |
0.4836 |
0.6531 |
nan |
0.3898 |
0.8453 |
0.1743 |
0.9269 |
0.2493 |
0.7922 |
0.0842 |
0.0 |
0.4874 |
0.2384 |
0.8116 |
0.6226 |
0.5731 |
0.6049 |
0.6620 |
0.7597 |
0.0 |
0.0 |
0.3746 |
0.7246 |
0.1690 |
0.6015 |
0.1998 |
0.5942 |
0.0786 |
0.0 |
0.2682 |
0.1904 |
0.7015 |
0.4781 |
0.4781 |
0.5452 |
0.5804 |
0.6562 |
0.0 |
0.635 |
0.36 |
180 |
0.3092 |
0.3699 |
0.4903 |
0.6319 |
nan |
0.4996 |
0.8387 |
0.2136 |
0.6184 |
0.0129 |
0.7920 |
0.8199 |
0.0 |
0.1895 |
0.3028 |
0.8307 |
0.7258 |
0.3386 |
0.7480 |
0.6543 |
0.7511 |
0.0 |
0.0 |
0.4613 |
0.7126 |
0.2042 |
0.5589 |
0.0128 |
0.6658 |
0.3529 |
0.0 |
0.1622 |
0.2426 |
0.7363 |
0.4646 |
0.3144 |
0.5794 |
0.5575 |
0.6321 |
0.0 |
0.1464 |
0.4 |
200 |
0.3306 |
0.3809 |
0.5041 |
0.6544 |
nan |
0.6110 |
0.8337 |
0.2420 |
0.8913 |
0.8862 |
0.6492 |
0.0004 |
0.0 |
0.2888 |
0.2949 |
0.8514 |
0.4630 |
0.7751 |
0.7020 |
0.5429 |
0.5386 |
0.0 |
0.0 |
0.5329 |
0.7348 |
0.2331 |
0.6567 |
0.3661 |
0.5769 |
0.0004 |
0.0 |
0.2221 |
0.2333 |
0.7431 |
0.4133 |
0.5478 |
0.5718 |
0.5125 |
0.5107 |
0.0 |
0.2257 |
0.44 |
220 |
0.2751 |
0.4089 |
0.5400 |
0.6752 |
nan |
0.6851 |
0.8458 |
0.4204 |
0.7241 |
0.1085 |
0.7997 |
0.7657 |
0.0 |
0.2458 |
0.4039 |
0.8858 |
0.7863 |
0.3199 |
0.7405 |
0.6974 |
0.7508 |
0.0 |
0.0 |
0.5815 |
0.7437 |
0.3776 |
0.6458 |
0.1033 |
0.6526 |
0.3966 |
0.0 |
0.2027 |
0.3078 |
0.7438 |
0.4680 |
0.2966 |
0.6204 |
0.5942 |
0.6260 |
0.0 |
0.3069 |
0.48 |
240 |
0.2614 |
0.4163 |
0.5499 |
0.6868 |
nan |
0.6246 |
0.8571 |
0.3130 |
0.7765 |
0.8266 |
0.7786 |
0.3212 |
0.0 |
0.3560 |
0.3736 |
0.8579 |
0.1780 |
0.8761 |
0.7423 |
0.7693 |
0.6970 |
0.0 |
0.0 |
0.5597 |
0.7370 |
0.2931 |
0.6733 |
0.4032 |
0.6889 |
0.2487 |
0.0 |
0.2662 |
0.2901 |
0.7425 |
0.1724 |
0.4957 |
0.6373 |
0.6376 |
0.6470 |
0.0 |
0.1454 |
0.52 |
260 |
0.2563 |
0.4316 |
0.5610 |
0.6965 |
nan |
0.6707 |
0.8388 |
0.5572 |
0.7616 |
0.3854 |
0.7280 |
0.7114 |
0.0 |
0.1934 |
0.3621 |
0.8718 |
0.7860 |
0.6140 |
0.7403 |
0.5340 |
0.7820 |
0.0 |
0.0 |
0.5710 |
0.7446 |
0.4497 |
0.6637 |
0.3125 |
0.6624 |
0.4219 |
0.0 |
0.1731 |
0.2862 |
0.7295 |
0.5339 |
0.5054 |
0.5742 |
0.4967 |
0.6449 |
0.0 |
0.1522 |
0.56 |
280 |
0.2521 |
0.4327 |
0.5567 |
0.7138 |
nan |
0.5098 |
0.9135 |
0.3399 |
0.8898 |
0.5537 |
0.7508 |
0.2922 |
0.0 |
0.3367 |
0.2484 |
0.8388 |
0.7460 |
0.7191 |
0.7496 |
0.7996 |
0.7753 |
0.0 |
0.0 |
0.4902 |
0.7541 |
0.3196 |
0.6924 |
0.3853 |
0.6261 |
0.2512 |
0.0 |
0.2575 |
0.2171 |
0.7393 |
0.5563 |
0.5633 |
0.6403 |
0.6335 |
0.6621 |
0.0 |
0.1872 |
0.6 |
300 |
0.2472 |
0.4432 |
0.5674 |
0.7252 |
nan |
0.6434 |
0.8437 |
0.4432 |
0.8047 |
0.3844 |
0.7534 |
0.7336 |
0.0 |
0.2764 |
0.2778 |
0.8632 |
0.7863 |
0.6434 |
0.7496 |
0.7996 |
0.7753 |
0.0 |
0.0 |
0.5710 |
0.7446 |
0.4497 |
0.6637 |
0.3125 |
0.6624 |
0.4219 |
0.0 |
0.1731 |
0.2862 |
0.7295 |
0.5339 |
0.5054 |
0.5742 |
0.4967 |
0.6449 |
0.0 |
đ License
This model is released under the other
license.