Segformer B5 Finetuned Segments Instryde Foot Test
S
Segformer B5 Finetuned Segments Instryde Foot Test
Developed by plant
An image segmentation model fine-tuned on the inStryde/inStrydeSegmentationFoot dataset, based on nvidia/mit-b5
Downloads 19
Release Time : 8/4/2022
Model Overview
This model is a B5 variant of the SegFormer architecture, specifically fine-tuned for foot image segmentation tasks. Suitable for medical imaging or foot-related visual analysis scenarios.
Model Features
High-Precision Segmentation
Achieves an overall accuracy of 0.9344 on foot image segmentation tasks
Domain-Specific Optimization
Specifically fine-tuned for medical/foot imaging data
Efficient Architecture
Based on SegFormer's hybrid Transformer architecture, balancing performance and efficiency
Model Capabilities
Foot Image Segmentation
Medical Image Analysis
Pixel-Level Classification
Use Cases
Medical Imaging
Foot Lesion Area Segmentation
Identify and segment specific areas in foot medical images
Average IoU reaches 0.4672
Biometrics
Foot Feature Extraction
Foot contour analysis for biometric recognition systems
đ segformer-b5-finetuned-segments-instryde-foot-test
This is a fine - tuned model based on nvidia/mit-b5 for image segmentation tasks, achieving excellent results on the inStryde/inStrydeSegmentationFoot dataset.
đ Quick Start
This model is a fine-tuned version of nvidia/mit-b5 on the inStryde/inStrydeSegmentationFoot dataset. It achieves the following results on the evaluation set:
- Loss: 0.0496
- Mean Iou: 0.4672
- Mean Accuracy: 0.9344
- Overall Accuracy: 0.9344
- Per Category Iou: [0.0, 0.9343870058298716]
- Per Category Accuracy: [nan, 0.9343870058298716]
đ Documentation
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
0.1392 | 0.23 | 20 | 0.2371 | 0.4064 | 0.8128 | 0.8128 | [0.0, 0.8127920708469037] | [nan, 0.8127920708469037] |
0.2273 | 0.45 | 40 | 0.0993 | 0.4449 | 0.8898 | 0.8898 | [0.0, 0.889800913515142] | [nan, 0.889800913515142] |
0.0287 | 0.68 | 60 | 0.0607 | 0.4190 | 0.8379 | 0.8379 | [0.0, 0.8379005425233161] | [nan, 0.8379005425233161] |
0.03 | 0.91 | 80 | 0.0572 | 0.4072 | 0.8144 | 0.8144 | [0.0, 0.8144304164916533] | [nan, 0.8144304164916533] |
0.0239 | 1.14 | 100 | 0.0577 | 0.3973 | 0.7946 | 0.7946 | [0.0, 0.7946284254068925] | [nan, 0.7946284254068925] |
0.0196 | 1.36 | 120 | 0.0425 | 0.4227 | 0.8455 | 0.8455 | [0.0, 0.8454754171184029] | [nan, 0.8454754171184029] |
0.0295 | 1.59 | 140 | 0.0368 | 0.4479 | 0.8958 | 0.8958 | [0.0, 0.895802316554768] | [nan, 0.895802316554768] |
0.0297 | 1.82 | 160 | 0.0441 | 0.4561 | 0.9121 | 0.9121 | [0.0, 0.9121241975954804] | [nan, 0.9121241975954804] |
0.0276 | 2.05 | 180 | 0.0332 | 0.4629 | 0.9258 | 0.9258 | [0.0, 0.925774145806165] | [nan, 0.925774145806165] |
0.0148 | 2.27 | 200 | 0.0395 | 0.4310 | 0.8621 | 0.8621 | [0.0, 0.8620666905637888] | [nan, 0.8620666905637888] |
0.012 | 2.5 | 220 | 0.0372 | 0.4381 | 0.8761 | 0.8761 | [0.0, 0.8761025846276997] | [nan, 0.8761025846276997] |
0.0117 | 2.73 | 240 | 0.0339 | 0.4471 | 0.8941 | 0.8941 | [0.0, 0.8941320836457919] | [nan, 0.8941320836457919] |
0.0198 | 2.95 | 260 | 0.0297 | 0.4485 | 0.8969 | 0.8969 | [0.0, 0.8969491585060927] | [nan, 0.8969491585060927] |
0.0247 | 3.18 | 280 | 0.0303 | 0.4565 | 0.9130 | 0.9130 | [0.0, 0.9130423308930413] | [nan, 0.9130423308930413] |
0.0115 | 3.41 | 300 | 0.0307 | 0.4533 | 0.9066 | 0.9066 | [0.0, 0.9065626188900153] | [nan, 0.9065626188900153] |
0.0164 | 3.64 | 320 | 0.0330 | 0.4549 | 0.9097 | 0.9097 | [0.0, 0.9097436483868343] | [nan, 0.9097436483868343] |
0.0114 | 3.86 | 340 | 0.0362 | 0.4425 | 0.8850 | 0.8850 | [0.0, 0.8849727418868903] | [nan, 0.8849727418868903] |
0.012 | 4.09 | 360 | 0.0321 | 0.4582 | 0.9164 | 0.9164 | [0.0, 0.9164498699219532] | [nan, 0.9164498699219532] |
0.0153 | 4.32 | 380 | 0.0321 | 0.4572 | 0.9144 | 0.9144 | [0.0, 0.9144310762281544] | [nan, 0.9144310762281544] |
0.0115 | 4.55 | 400 | 0.0307 | 0.4573 | 0.9145 | 0.9145 | [0.0, 0.9145300367033407] | [nan, 0.9145300367033407] |
0.0139 | 4.77 | 420 | 0.0330 | 0.4678 | 0.9357 | 0.9357 | [0.0, 0.935664695520609] | [nan, 0.935664695520609] |
0.014 | 5.0 | 440 | 0.0317 | 0.4635 | 0.9271 | 0.9271 | [0.0, 0.9270562337402442] | [nan, 0.9270562337402442] |
0.0197 | 5.23 | 460 | 0.0320 | 0.4678 | 0.9356 | 0.9356 | [0.0, 0.9355745315321061] | [nan, 0.9355745315321061] |
0.0086 | 5.45 | 480 | 0.0337 | 0.4607 | 0.9214 | 0.9214 | [0.0, 0.9213528116870122] | [nan, 0.9213528116870122] |
0.3103 | 5.68 | 500 | 0.0338 | 0.4548 | 0.9096 | 0.9096 | [0.0, 0.9095853116265363] | [nan, 0.9095853116265363] |
0.0088 | 5.91 | 520 | 0.0305 | 0.4635 | 0.9270 | 0.9270 | [0.0, 0.9270243464760175] | [nan, 0.9270243464760175] |
0.0119 | 6.14 | 540 | 0.0299 | 0.4680 | 0.9359 | 0.9359 | [0.0, 0.9359494817769782] | [nan, 0.9359494817769782] |
0.0114 | 6.36 | 560 | 0.0314 | 0.4574 | 0.9148 | 0.9148 | [0.0, 0.914796130425508] | [nan, 0.914796130425508] |
0.0122 | 6.59 | 580 | 0.0289 | 0.4613 | 0.9227 | 0.9227 | [0.0, 0.9226920767845322] | [nan, 0.9226920767845322] |
0.0164 | 6.82 | 600 | 0.0312 | 0.4620 | 0.9240 | 0.9240 | [0.0, 0.9239807620836238] | [nan, 0.9239807620836238] |
0.0062 | 7.05 | 620 | 0.0335 | 0.4605 | 0.9210 | 0.9210 | [0.0, 0.9209954544155065] | [nan, 0.9209954544155065] |
0.0089 | 7.27 | 640 | 0.0309 | 0.4659 | 0.9317 | 0.9317 | [0.0, 0.9317029778306545] | [nan, 0.9317029778306545] |
0.0251 | 7.5 | 660 | 0.0291 | 0.4734 | 0.9468 | 0.9468 | [0.0, 0.9467878529315391] | [nan, 0.9467878529315391] |
0.0065 | 7.73 | 680 | 0.0326 | 0.4598 | 0.9195 | 0.9195 | [0.0, 0.9195297398219151] | [nan, 0.9195297398219151] |
0.0056 | 7.95 | 700 | 0.0310 | 0.4606 | 0.9213 | 0.9213 | [0.0, 0.9212714441851925] | [nan, 0.9212714441851925] |
0.0099 | 8.18 | 720 | 0.0345 | 0.4503 | 0.9006 | 0.9006 | [0.0, 0.9006183930138303] | [nan, 0.9006183930138303] |
0.0103 | 8.41 | 740 | 0.0335 | 0.4539 | 0.9078 | 0.9078 | [0.0, 0.9077512441530853] | [nan, 0.9077512441530853] |
0.0065 | 8.64 | 760 | 0.0334 | 0.4544 | 0.9088 | 0.9088 | [0.0, 0.9087936278250467] | [nan, 0.9087936278250467] |
0.0047 | 8.86 | 780 | 0.0341 | 0.4557 | 0.9114 | 0.9114 | [0.0, 0.9114215782216583] | [nan, 0.9114215782216583] |
0.0105 | 9.09 | 800 | 0.0315 | 0.4597 | 0.9195 | 0.9195 | [0.0, 0.9194703635368034] | [nan, 0.9194703635368034] |
0.0087 | 9.32 | 820 | 0.0329 | 0.4583 | 0.9166 | 0.9166 | [0.0, 0.9165708216138474] | [nan, 0.9165708216138474] |
0.0122 | 9.55 | 840 | 0.0357 | 0.4537 | 0.9073 | 0.9073 | [0.0, 0.9073004242105703] | [nan, 0.9073004242105703] |
0.0057 | 9.77 | 860 | 0.0319 | 0.4621 | 0.9241 | 0.9241 | [0.0, 0.9241050124580242] | [nan, 0.9241050124580242] |
0.0068 | 10.0 | 880 | 0.0342 | 0.4539 | 0.9078 | 0.9078 | [0.0, 0.907799624829843] | [nan, 0.907799624829843] |
0.0095 | 10.23 | 900 | 0.0340 | 0.4578 | 0.9156 | 0.9156 | [0.0, 0.9155933120311748] | [nan, 0.9155933120311748] |
0.0043 | 10.45 | 920 | 0.0319 | 0.4636 | 0.9272 | 0.9272 | [0.0, 0.9271771854321385] | [nan, 0.9271771854321385] |
0.0049 | 10.68 | 940 | 0.0308 | 0.4659 | 0.9319 | 0.9319 | [0.0, 0.9318525181042692] | [nan, 0.9318525181042692] |
0.005 | 10.91 | 960 | 0.0319 | 0.4640 | 0.9281 | 0.9281 | [0.0, 0.9280612323438019] | [nan, 0.9280612323438019] |
0.0043 | 11.14 | 980 | 0.0313 | 0.4653 | 0.9306 | 0.9306 | [0.0, 0.930638602941985] | [nan, 0.930638602941985] |
0.0084 | 11.36 | 1000 | 0.0321 | 0.4632 | 0.9264 | 0.9264 | [0.0, 0.9264294840640648] | [nan, 0.9264294840640648] |
0.0044 | 11.59 | 1020 | 0.0320 | 0.4643 | 0.9285 | 0.9285 | [0.0, 0.9285241474555063] | [nan, 0.9285241474555063] |
0.0044 | 11.82 | 1040 | 0.0321 | 0.4661 | 0.9321 | 0.9321 | [0.0, 0.9321098153397533] | [nan, 0.9321098153397533] |
0.0057 | 12.05 | 1060 | 0.0338 | 0.4626 | 0.9253 | 0.9253 | [0.0, 0.9252518544093489] | [nan, 0.9252518544093489] |
0.0064 | 12.27 | 1080 | 0.0348 | 0.4616 | 0.9231 | 0.9231 | [0.0, 0.9231450958487181] | [nan, 0.9231450958487181] |
0.0075 | 12.5 | 1100 | 0.0331 | 0.4618 | 0.9237 | 0.9237 | [0.0, 0.9236706859280404] | [nan, 0.9236706859280404] |
0.0103 | 12.73 | 1120 | 0.0317 | 0.4704 | 0.9408 | 0.9408 | [0.0, 0.9408425274945187] | [nan, 0.9408425274945187] |
0.0053 | 12.95 | 1140 | 0.0320 | 0.4704 | 0.9407 | 0.9407 | [0.0, 0.9407292727284723] | [nan, 0.9407292727284723] |
0.0073 | 13.18 | 1160 | 0.0331 | 0.4652 | 0.9305 | 0.9305 | [0.0, 0.9304681710124976] | [nan, 0.9304681710124976] |
0.0052 | 13.41 | 1180 | 0.0342 | 0.4664 | 0.9328 | 0.9328 | [0.0, 0.9328047377877275] | [nan, 0.9328047377877275] |
0.0089 | 13.64 | 1200 | 0.0322 | 0.4676 | 0.9353 | 0.9353 | [0.0, 0.9352996413232555] | [nan, 0.9352996413232555] |
0.0054 | 13.86 | 1220 | 0.0332 | 0.4655 | 0.9311 | 0.9311 | [0.0, 0.9310509382552609] | [nan, 0.9310509382552609] |
0.0057 | 14.09 | 1240 | 0.0333 | 0.4661 | 0.9321 | 0.9321 | [0.0, 0.9321439017256508] | [nan, 0.9321439017256508] |
0.0047 | 14.32 | 1260 | 0.0346 | 0.4639 | 0.9278 | 0.9278 | [0.0, 0.9277522557490538] | [nan, 0.9277522557490538] |
0.0092 | 14.55 | 1280 | 0.0380 | 0.4583 | 0.9166 | 0.9166 | [0.0, 0.9166290983381238] | [nan, 0.9166290983381238] |
0.0066 | 14.77 | 1300 | 0.0338 | 0.4638 | 0.9277 | 0.9277 | [0.0, 0.927687381659765] | [nan, 0.927687381659765] |
0.0076 | 15.0 | 1320 | 0.0347 | 0.4640 | 0.9280 | 0.9280 | [0.0, 0.9279897608895007] | [nan, 0.9279897608895007] |
0.0054 | 15.23 | 1340 | 0.0345 | 0.4647 | 0.9295 | 0.9295 | [0.0, 0.9294664710914461] | [nan, 0.9294664710914461] |
0.0036 | 15.45 | 1360 | 0.0349 | 0.4666 | 0.9332 | 0.9332 | [0.0, 0.9331950818842955] | [nan, 0.9331950818842955] |
0.004 | 15.68 | 1380 | 0.0352 | 0.4617 | 0.9234 | 0.9234 | [0.0, 0.9234408777134413] | [nan, 0.9234408777134413] |
0.0042 | 15.91 | 1400 | 0.0357 | 0.4622 | 0.9244 | 0.9244 | [0.0, 0.9244282833436326] | [nan, 0.9244282833436326] |
0.0048 | 16.14 | 1420 | 0.0370 | 0.4586 | 0.9172 | 0.9172 | [0.0, 0.9171546884174461] | [nan, 0.9171546884174461] |
0.0043 | 16.36 | 1440 | 0.0345 | 0.4647 | 0.9294 | 0.9294 | [0.0, 0.9294411811922318] | [nan, 0.9294411811922318] |
0.0027 | 16.59 | 1460 | 0.0354 | 0.4667 | 0.9334 | 0.9334 | [0.0, 0.9333754098613014] | [nan, 0.9333754098613014] |
0.0057 | 16.82 | 1480 | 0.0364 | 0.4689 | 0.9379 | 0.9379 | [0.0, 0.9378913062122988] | [nan, 0.9378913062122988] |
0.0035 | 17.05 | 1500 | 0.0363 | 0.4662 | 0.9325 | 0.9325 | [0.0, 0.9324988144273747] | [nan, 0.9324988144273747] |
đ License
other
Clipseg Rd64 Refined
Apache-2.0
CLIPSeg is an image segmentation model based on text and image prompts, supporting zero-shot and one-shot image segmentation tasks.
Image Segmentation
Transformers

C
CIDAS
10.0M
122
RMBG 1.4
Other
BRIA RMBG v1.4 is an advanced background removal model designed for efficiently separating foreground and background in various types of images, suitable for non-commercial use.
Image Segmentation
Transformers

R
briaai
874.12k
1,771
RMBG 2.0
Other
The latest background removal model developed by BRIA AI, capable of effectively separating foreground and background in various images, suitable for large-scale commercial content creation scenarios.
Image Segmentation
Transformers

R
briaai
703.33k
741
Segformer B2 Clothes
MIT
SegFormer model fine-tuned on ATR dataset for clothing and human segmentation
Image Segmentation
Transformers

S
mattmdjaga
666.39k
410
Sam Vit Base
Apache-2.0
SAM is a vision model capable of generating high-quality object masks from input prompts (such as points or boxes), supporting zero-shot segmentation tasks
Image Segmentation
Transformers Other

S
facebook
635.09k
137
Birefnet
MIT
BiRefNet is a deep learning model for high-resolution binary image segmentation, which achieves accurate image segmentation through a bilateral reference network.
Image Segmentation
Transformers

B
ZhengPeng7
626.54k
365
Segformer B1 Finetuned Ade 512 512
Other
SegFormer is a Transformer-based semantic segmentation model fine-tuned on the ADE20K dataset, suitable for image segmentation tasks.
Image Segmentation
Transformers

S
nvidia
560.79k
6
Sam Vit Large
Apache-2.0
SAM is a visual model capable of generating high-quality object masks from input points or bounding boxes, with zero-shot transfer capability.
Image Segmentation
Transformers Other

S
facebook
455.43k
28
Face Parsing
Semantic segmentation model fine-tuned from nvidia/mit-b5 for face parsing tasks
Image Segmentation
Transformers English

F
jonathandinu
398.59k
157
Sam Vit Huge
Apache-2.0
SAM is a vision model capable of generating high-quality object masks based on input prompts, supporting zero-shot transfer to new tasks
Image Segmentation
Transformers Other

S
facebook
324.78k
163
Featured Recommended AI Models
Š 2025AIbase