đ segformer-b0-finetuned-human-parsing
This model is a fine - tuned version of [nvidia/mit - b0](https://huggingface.co/nvidia/mit - b0). It is designed for image segmentation tasks, specifically human parsing. The model achieves certain performance metrics on the evaluation set, providing valuable insights into its effectiveness.
đ Quick Start
This model is a fine - tuned version of [nvidia/mit - b0](https://huggingface.co/nvidia/mit - b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9476
- Mean Iou: 0.0726
- Mean Accuracy: 0.1221
- Overall Accuracy: 0.3575
- Accuracy Background: nan
- Accuracy Hat: 0.0048
- Accuracy Hair: 0.4813
- Accuracy Sunglasses: 0.0
- Accuracy Upper - clothes: 0.9405
- Accuracy Skirt: 0.0000
- Accuracy Pants: 0.0631
- Accuracy Dress: 0.1031
- Accuracy Belt: 0.0
- Accuracy Left - shoe: 0.0011
- Accuracy Right - shoe: 0.0010
- Accuracy Face: 0.4406
- Accuracy Left - leg: 0.0291
- Accuracy Right - leg: 0.0
- Accuracy Left - arm: 0.0
- Accuracy Right - arm: 0.0001
- Accuracy Bag: 0.0114
- Accuracy Scarf: 0.0
- Iou Background: 0.0
- Iou Hat: 0.0043
- Iou Hair: 0.4221
- Iou Sunglasses: 0.0
- Iou Upper - clothes: 0.3239
- Iou Skirt: 0.0000
- Iou Pants: 0.0559
- Iou Dress: 0.0728
- Iou Belt: 0.0
- Iou Left - shoe: 0.0011
- Iou Right - shoe: 0.0009
- Iou Face: 0.3872
- Iou Left - leg: 0.0271
- Iou Right - leg: 0.0
- Iou Left - arm: 0.0
- Iou Right - arm: 0.0001
- Iou Bag: 0.0106
- Iou Scarf: 0.0
đ Documentation
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e - 05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Mean Iou |
Mean Accuracy |
Overall Accuracy |
Accuracy Background |
Accuracy Hat |
Accuracy Hair |
Accuracy Sunglasses |
Accuracy Upper - clothes |
Accuracy Skirt |
Accuracy Pants |
Accuracy Dress |
Accuracy Belt |
Accuracy Left - shoe |
Accuracy Right - shoe |
Accuracy Face |
Accuracy Left - leg |
Accuracy Right - leg |
Accuracy Left - arm |
Accuracy Right - arm |
Accuracy Bag |
Accuracy Scarf |
Iou Background |
Iou Hat |
Iou Hair |
Iou Sunglasses |
Iou Upper - clothes |
Iou Skirt |
Iou Pants |
Iou Dress |
Iou Belt |
Iou Left - shoe |
Iou Right - shoe |
Iou Face |
Iou Left - leg |
Iou Right - leg |
Iou Left - arm |
Iou Right - arm |
Iou Bag |
Iou Scarf |
2.5768 |
0.4 |
20 |
2.7812 |
0.0726 |
0.1332 |
0.2876 |
nan |
0.0178 |
0.3204 |
0.0004 |
0.5548 |
0.0004 |
0.2555 |
0.2373 |
0.0 |
0.0103 |
0.0003 |
0.5637 |
0.0287 |
0.0302 |
0.0001 |
0.0008 |
0.2435 |
0.0 |
0.0 |
0.0166 |
0.2759 |
0.0001 |
0.2781 |
0.0004 |
0.1710 |
0.1295 |
0.0 |
0.0098 |
0.0003 |
0.3251 |
0.0260 |
0.0248 |
0.0001 |
0.0007 |
0.0491 |
0.0 |
2.2093 |
0.8 |
40 |
2.5166 |
0.0563 |
0.1052 |
0.3288 |
nan |
0.0 |
0.1994 |
0.0 |
0.9447 |
0.0015 |
0.0435 |
0.1164 |
0.0 |
0.0008 |
0.0000 |
0.4655 |
0.0007 |
0.0003 |
0.0 |
0.0 |
0.0153 |
0.0 |
0.0 |
0.0 |
0.1946 |
0.0 |
0.3037 |
0.0015 |
0.0417 |
0.0842 |
0.0 |
0.0008 |
0.0000 |
0.3726 |
0.0007 |
0.0003 |
0.0 |
0.0 |
0.0124 |
0.0 |
1.8804 |
1.2 |
60 |
2.0209 |
0.0632 |
0.1110 |
0.3374 |
nan |
0.0087 |
0.3724 |
0.0 |
0.9475 |
0.0014 |
0.0162 |
0.0528 |
0.0 |
0.0001 |
0.0008 |
0.4257 |
0.0561 |
0.0001 |
0.0 |
0.0 |
0.0055 |
0.0 |
0.0 |
0.0077 |
0.3472 |
0.0 |
0.3086 |
0.0014 |
0.0156 |
0.0403 |
0.0 |
0.0001 |
0.0008 |
0.3597 |
0.0515 |
0.0001 |
0.0 |
0.0 |
0.0052 |
0.0 |
1.8776 |
1.6 |
80 |
2.0016 |
0.0665 |
0.1154 |
0.3454 |
nan |
0.0056 |
0.4172 |
0.0 |
0.9412 |
0.0000 |
0.0490 |
0.0697 |
0.0 |
0.0002 |
0.0006 |
0.4349 |
0.0329 |
0.0000 |
0.0 |
0.0000 |
0.0100 |
0.0 |
0.0 |
0.0048 |
0.3791 |
0.0 |
0.3138 |
0.0000 |
0.0438 |
0.0542 |
0.0 |
0.0002 |
0.0006 |
0.3608 |
0.0304 |
0.0000 |
0.0 |
0.0000 |
0.0093 |
0.0 |
1.8471 |
2.0 |
100 |
1.9476 |
0.0726 |
0.1221 |
0.3575 |
nan |
0.0048 |
0.4813 |
0.0 |
0.9405 |
0.0000 |
0.0631 |
0.1031 |
0.0 |
0.0011 |
0.0010 |
0.4406 |
0.0291 |
0.0 |
0.0 |
0.0001 |
0.0114 |
0.0 |
0.0 |
0.0043 |
0.4221 |
0.0 |
0.3239 |
0.0000 |
0.0559 |
0.0728 |
0.0 |
0.0011 |
0.0009 |
0.3872 |
0.0271 |
0.0 |
0.0 |
0.0001 |
0.0106 |
0.0 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
đ License
License: other