Roadsense High Definition Street Segmentation
A lightweight image segmentation model based on SegFormer architecture, specifically fine-tuned for sidewalk scenarios
Downloads 63
Release Time : 7/7/2023
Model Overview
This model is based on the SegFormer MIT-B0 architecture, fine-tuned on the segments/sidewalk-semantic dataset for semantic segmentation tasks in sidewalk scenarios.
Model Features
Lightweight Design
Based on SegFormer-B0 architecture, suitable for deployment in resource-constrained environments
Sidewalk Scenario Optimization
Specifically fine-tuned for sidewalk-related scenarios to improve recognition accuracy of relevant categories
Multi-category Recognition
Can recognize 40+ categories including roads, sidewalks, buildings, vehicles, etc.
Model Capabilities
Semantic Segmentation
Scene Understanding
Road Element Recognition
Urban Landscape Analysis
Use Cases
Smart City
Sidewalk Maintenance Monitoring
Automatically detects damaged or abnormal areas on sidewalks
Flat sidewalk recognition accuracy reaches 96.11%
Traffic Infrastructure Analysis
Identifies road signs, traffic lights, and other infrastructure
Autonomous Driving
Road Scene Understanding
Provides environmental perception capabilities for autonomous driving systems
Vehicle recognition accuracy reaches 93.32%
license: other tags:
- generated_from_trainer
- image_segmentation model-index:
- name: segformer-b0-finetuned-segments-sidewalk results: [] datasets:
- segments/sidewalk-semantic library_name: transformers pipeline_tag: image-segmentation
segformer-b0-finetuned-segments-sidewalk
This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5449
- Mean Iou: 0.3292
- Mean Accuracy: 0.3907
- Overall Accuracy: 0.8555
- Accuracy Unlabeled: nan
- Accuracy Flat-road: 0.8585
- Accuracy Flat-sidewalk: 0.9611
- Accuracy Flat-crosswalk: 0.7673
- Accuracy Flat-cyclinglane: 0.8223
- Accuracy Flat-parkingdriveway: 0.5127
- Accuracy Flat-railtrack: nan
- Accuracy Flat-curb: 0.4937
- Accuracy Human-person: 0.7164
- Accuracy Human-rider: 0.0
- Accuracy Vehicle-car: 0.9332
- Accuracy Vehicle-truck: 0.0
- Accuracy Vehicle-bus: nan
- Accuracy Vehicle-tramtrain: nan
- Accuracy Vehicle-motorcycle: 0.0
- Accuracy Vehicle-bicycle: 0.3858
- Accuracy Vehicle-caravan: 0.0
- Accuracy Vehicle-cartrailer: 0.0
- Accuracy Construction-building: 0.9040
- Accuracy Construction-door: 0.0
- Accuracy Construction-wall: 0.5848
- Accuracy Construction-fenceguardrail: 0.4417
- Accuracy Construction-bridge: 0.0
- Accuracy Construction-tunnel: nan
- Accuracy Construction-stairs: 0.0
- Accuracy Object-pole: 0.3156
- Accuracy Object-trafficsign: 0.0
- Accuracy Object-trafficlight: 0.0
- Accuracy Nature-vegetation: 0.9413
- Accuracy Nature-terrain: 0.8456
- Accuracy Sky: 0.9600
- Accuracy Void-ground: 0.0
- Accuracy Void-dynamic: 0.0
- Accuracy Void-static: 0.2780
- Accuracy Void-unclear: 0.0
- Iou Unlabeled: nan
- Iou Flat-road: 0.7447
- Iou Flat-sidewalk: 0.8755
- Iou Flat-crosswalk: 0.6244
- Iou Flat-cyclinglane: 0.7325
- Iou Flat-parkingdriveway: 0.3997
- Iou Flat-railtrack: nan
- Iou Flat-curb: 0.3974
- Iou Human-person: 0.4985
- Iou Human-rider: 0.0
- Iou Vehicle-car: 0.7798
- Iou Vehicle-truck: 0.0
- Iou Vehicle-bus: nan
- Iou Vehicle-tramtrain: nan
- Iou Vehicle-motorcycle: 0.0
- Iou Vehicle-bicycle: 0.2904
- Iou Vehicle-caravan: 0.0
- Iou Vehicle-cartrailer: 0.0
- Iou Construction-building: 0.7233
- Iou Construction-door: 0.0
- Iou Construction-wall: 0.4555
- Iou Construction-fenceguardrail: 0.3734
- Iou Construction-bridge: 0.0
- Iou Construction-tunnel: nan
- Iou Construction-stairs: 0.0
- Iou Object-pole: 0.2484
- Iou Object-trafficsign: 0.0
- Iou Object-trafficlight: 0.0
- Iou Nature-vegetation: 0.8451
- Iou Nature-terrain: 0.7346
- Iou Sky: 0.9161
- Iou Void-ground: 0.0
- Iou Void-dynamic: 0.0
- Iou Void-static: 0.2359
- Iou Void-unclear: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.4172 | 1.87 | 200 | 1.2183 | 0.1696 | 0.2214 | 0.7509 | nan | 0.8882 | 0.9199 | 0.0 | 0.4200 | 0.0164 | nan | 0.0 | 0.0 | 0.0 | 0.8778 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8448 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9430 | 0.8044 | 0.9274 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5435 | 0.8135 | 0.0 | 0.3743 | 0.0160 | nan | 0.0 | 0.0 | 0.0 | 0.6044 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5373 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7516 | 0.6550 | 0.7928 | 0.0 | 0.0 | 0.0 | 0.0 |
1.1152 | 3.74 | 400 | 0.8946 | 0.1947 | 0.2441 | 0.7852 | nan | 0.8535 | 0.9471 | 0.0 | 0.7379 | 0.2453 | nan | 0.0398 | 0.0 | 0.0 | 0.8882 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8746 | 0.0 | 0.0061 | 0.0 | 0.0 | nan | 0.0 | 0.0014 | 0.0 | 0.0 | 0.9526 | 0.8285 | 0.9448 | 0.0 | 0.0 | 0.0019 | 0.0 | nan | 0.6355 | 0.8321 | 0.0 | 0.5529 | 0.1940 | nan | 0.0392 | 0.0 | 0.0 | 0.6807 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5913 | 0.0 | 0.0061 | 0.0 | 0.0 | nan | 0.0 | 0.0014 | 0.0 | 0.0 | 0.7701 | 0.6777 | 0.8567 | 0.0 | 0.0 | 0.0019 | 0.0 |
0.6637 | 5.61 | 600 | 0.7447 | 0.2349 | 0.2841 | 0.8104 | nan | 0.8589 | 0.9451 | 0.4455 | 0.8008 | 0.3753 | nan | 0.3267 | 0.0380 | 0.0 | 0.8920 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9227 | 0.0 | 0.0938 | 0.0 | 0.0 | nan | 0.0 | 0.0167 | 0.0 | 0.0 | 0.9291 | 0.8677 | 0.9557 | 0.0 | 0.0 | 0.0562 | 0.0 | nan | 0.6768 | 0.8543 | 0.4064 | 0.6414 | 0.2914 | nan | 0.2749 | 0.0376 | 0.0 | 0.7268 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6078 | 0.0 | 0.0879 | 0.0 | 0.0 | nan | 0.0 | 0.0164 | 0.0 | 0.0 | 0.8005 | 0.6817 | 0.8918 | 0.0 | 0.0 | 0.0525 | 0.0 |
0.673 | 7.48 | 800 | 0.6631 | 0.2691 | 0.3202 | 0.8278 | nan | 0.8387 | 0.9575 | 0.6176 | 0.7938 | 0.4208 | nan | 0.3575 | 0.3977 | 0.0 | 0.9264 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9068 | 0.0 | 0.4035 | 0.0 | 0.0 | nan | 0.0 | 0.1137 | 0.0 | 0.0 | 0.9495 | 0.8165 | 0.9453 | 0.0 | 0.0 | 0.1599 | 0.0 | nan | 0.7042 | 0.8567 | 0.5239 | 0.6600 | 0.3246 | nan | 0.3003 | 0.3212 | 0.0 | 0.7246 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6749 | 0.0 | 0.3113 | 0.0 | 0.0 | nan | 0.0 | 0.1038 | 0.0 | 0.0 | 0.8147 | 0.7070 | 0.9008 | 0.0 | 0.0 | 0.1445 | 0.0 |
0.502 | 9.35 | 1000 | 0.6249 | 0.2818 | 0.3371 | 0.8345 | nan | 0.8332 | 0.9538 | 0.7158 | 0.8344 | 0.4079 | nan | 0.4420 | 0.4941 | 0.0 | 0.9275 | 0.0 | nan | nan | 0.0 | 0.0172 | 0.0 | 0.0 | 0.9102 | 0.0 | 0.4787 | 0.0253 | 0.0 | nan | 0.0 | 0.1454 | 0.0 | 0.0 | 0.9460 | 0.8350 | 0.9588 | 0.0 | 0.0 | 0.1887 | 0.0 | nan | 0.7176 | 0.8635 | 0.6035 | 0.6519 | 0.3246 | nan | 0.3545 | 0.3720 | 0.0 | 0.7524 | 0.0 | nan | nan | 0.0 | 0.0172 | 0.0 | 0.0 | 0.6861 | 0.0 | 0.3286 | 0.0250 | 0.0 | nan | 0.0 | 0.1309 | 0.0 | 0.0 | 0.8335 | 0.7300 | 0.9037 | 0.0 | 0.0 | 0.1584 | 0.0 |
0.9687 | 11.21 | 1200 | 0.5786 | 0.3093 | 0.3675 | 0.8471 | nan | 0.8703 | 0.9504 | 0.7382 | 0.7705 | 0.5297 | nan | 0.4804 | 0.6250 | 0.0 | 0.9168 | 0.0 | nan | nan | 0.0 | 0.1397 | 0.0 | 0.0 | 0.9228 | 0.0 | 0.5710 | 0.3183 | 0.0 | nan | 0.0 | 0.2252 | 0.0 | 0.0 | 0.9314 | 0.8840 | 0.9536 | 0.0 | 0.0 | 0.1981 | 0.0 | nan | 0.7380 | 0.8743 | 0.5825 | 0.7093 | 0.3829 | nan | 0.3743 | 0.4600 | 0.0 | 0.7727 | 0.0 | nan | nan | 0.0 | 0.1372 | 0.0 | 0.0 | 0.7008 | 0.0 | 0.4315 | 0.2847 | 0.0 | nan | 0.0 | 0.1930 | 0.0 | 0.0 | 0.8397 | 0.7121 | 0.9109 | 0.0 | 0.0 | 0.1761 | 0.0 |
0.4681 | 13.08 | 1400 | 0.5759 | 0.3106 | 0.3665 | 0.8462 | nan | 0.8586 | 0.9572 | 0.5158 | 0.8121 | 0.5195 | nan | 0.4539 | 0.6944 | 0.0 | 0.9308 | 0.0 | nan | nan | 0.0 | 0.2759 | 0.0 | 0.0 | 0.9126 | 0.0 | 0.4927 | 0.3145 | 0.0 | nan | 0.0 | 0.2566 | 0.0 | 0.0 | 0.9396 | 0.8736 | 0.9644 | 0.0 | 0.0 | 0.2226 | 0.0 | nan | 0.7134 | 0.8742 | 0.5009 | 0.7146 | 0.4018 | nan | 0.3726 | 0.4661 | 0.0 | 0.7674 | 0.0 | nan | nan | 0.0 | 0.2501 | 0.0 | 0.0 | 0.6997 | 0.0 | 0.3933 | 0.2827 | 0.0 | nan | 0.0 | 0.2137 | 0.0 | 0.0 | 0.8377 | 0.7212 | 0.9109 | 0.0 | 0.0 | 0.1964 | 0.0 |
0.5374 | 14.95 | 1600 | 0.5534 | 0.3232 | 0.3823 | 0.8518 | nan | 0.8607 | 0.9545 | 0.7138 | 0.8398 | 0.5129 | nan | 0.4823 | 0.7055 | 0.0 | 0.9225 | 0.0 | nan | nan | 0.0 | 0.3058 | 0.0 | 0.0 | 0.8999 | 0.0 | 0.5436 | 0.3798 | 0.0 | nan | 0.0 | 0.2878 | 0.0 | 0.0 | 0.9485 | 0.8388 | 0.9598 | 0.0 | 0.0 | 0.3145 | 0.0 | nan | 0.7336 | 0.8788 | 0.6094 | 0.7062 | 0.3966 | nan | 0.3854 | 0.4897 | 0.0 | 0.7823 | 0.0 | nan | nan | 0.0 | 0.2782 | 0.0 | 0.0 | 0.7148 | 0.0 | 0.4182 | 0.3304 | 0.0 | nan | 0.0 | 0.2324 | 0.0 | 0.0 | 0.8415 | 0.7356 | 0.9130 | 0.0 | 0.0 | 0.2491 | 0.0 |
0.6115 | 16.82 | 1800 | 0.5528 | 0.3266 | 0.3849 | 0.8539 | nan | 0.8521 | 0.9611 | 0.6840 | 0.8291 | 0.5057 | nan | 0.5070 | 0.7165 | 0.0 | 0.9267 | 0.0 | nan | nan | 0.0 | 0.3659 | 0.0 | 0.0 | 0.9007 | 0.0 | 0.5844 | 0.3961 | 0.0 | nan | 0.0 | 0.2827 | 0.0 | 0.0 | 0.9517 | 0.8371 | 0.9602 | 0.0 | 0.0 | 0.2848 | 0.0 | nan | 0.7414 | 0.8721 | 0.6312 | 0.7245 | 0.3979 | nan | 0.3987 | 0.4932 | 0.0 | 0.7799 | 0.0 | nan | nan | 0.0 | 0.2788 | 0.0 | 0.0 | 0.7242 | 0.0 | 0.4542 | 0.3464 | 0.0 | nan | 0.0 | 0.2326 | 0.0 | 0.0 | 0.8384 | 0.7318 | 0.9141 | 0.0 | 0.0 | 0.2386 | 0.0 |
0.4766 | 18.69 | 2000 | 0.5449 | 0.3292 | 0.3907 | 0.8555 | nan | 0.8585 | 0.9611 | 0.7673 | 0.8223 | 0.5127 | nan | 0.4937 | 0.7164 | 0.0 | 0.9332 | 0.0 | nan | nan | 0.0 | 0.3858 | 0.0 | 0.0 | 0.9040 | 0.0 | 0.5848 | 0.4417 | 0.0 | nan | 0.0 | 0.3156 | 0.0 | 0.0 | 0.9413 | 0.8456 | 0.9600 | 0.0 | 0.0 | 0.2780 | 0.0 | nan | 0.7447 | 0.8755 | 0.6244 | 0.7325 | 0.3997 | nan | 0.3974 | 0.4985 | 0.0 | 0.7798 | 0.0 | nan | nan | 0.0 | 0.2904 | 0.0 | 0.0 | 0.7233 | 0.0 | 0.4555 | 0.3734 | 0.0 | nan | 0.0 | 0.2484 | 0.0 | 0.0 | 0.8451 | 0.7346 | 0.9161 | 0.0 | 0.0 | 0.2359 | 0.0 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
Clipseg Rd64 Refined
Apache-2.0
CLIPSeg is an image segmentation model based on text and image prompts, supporting zero-shot and one-shot image segmentation tasks.
Image Segmentation
Transformers

C
CIDAS
10.0M
122
RMBG 1.4
Other
BRIA RMBG v1.4 is an advanced background removal model designed for efficiently separating foreground and background in various types of images, suitable for non-commercial use.
Image Segmentation
Transformers

R
briaai
874.12k
1,771
RMBG 2.0
Other
The latest background removal model developed by BRIA AI, capable of effectively separating foreground and background in various images, suitable for large-scale commercial content creation scenarios.
Image Segmentation
Transformers

R
briaai
703.33k
741
Segformer B2 Clothes
MIT
SegFormer model fine-tuned on ATR dataset for clothing and human segmentation
Image Segmentation
Transformers

S
mattmdjaga
666.39k
410
Sam Vit Base
Apache-2.0
SAM is a vision model capable of generating high-quality object masks from input prompts (such as points or boxes), supporting zero-shot segmentation tasks
Image Segmentation
Transformers Other

S
facebook
635.09k
137
Birefnet
MIT
BiRefNet is a deep learning model for high-resolution binary image segmentation, which achieves accurate image segmentation through a bilateral reference network.
Image Segmentation
Transformers

B
ZhengPeng7
626.54k
365
Segformer B1 Finetuned Ade 512 512
Other
SegFormer is a Transformer-based semantic segmentation model fine-tuned on the ADE20K dataset, suitable for image segmentation tasks.
Image Segmentation
Transformers

S
nvidia
560.79k
6
Sam Vit Large
Apache-2.0
SAM is a visual model capable of generating high-quality object masks from input points or bounding boxes, with zero-shot transfer capability.
Image Segmentation
Transformers Other

S
facebook
455.43k
28
Face Parsing
Semantic segmentation model fine-tuned from nvidia/mit-b5 for face parsing tasks
Image Segmentation
Transformers English

F
jonathandinu
398.59k
157
Sam Vit Huge
Apache-2.0
SAM is a vision model capable of generating high-quality object masks based on input prompts, supporting zero-shot transfer to new tasks
Image Segmentation
Transformers Other

S
facebook
324.78k
163
Featured Recommended AI Models