đ ecc_segformerv2
This model, ecc_segformerv2
, is a fine - tuned version of nvidia/mit-b5 on the rishitunu/ecc_crackdetector_dataset dataset. It offers valuable insights for image segmentation tasks, especially in the field of vision.
đ Quick Start
This model is ready for use in image segmentation tasks. You can fine - tune it further on your own dataset or directly use it for inference.
đ Documentation
Model Information
Property |
Details |
Model Type |
Fine - tuned version of nvidia/mit-b5 |
Training Data |
rishitunu/ecc_crackdetector_dataset |
Evaluation Results
This model achieves the following results on the evaluation set:
- Loss: 0.3478
- Mean Iou: 0.0862
- Mean Accuracy: 0.1924
- Overall Accuracy: 0.1924
- Accuracy Background: nan
- Accuracy Crack: 0.1924
- Iou Background: 0.0
- Iou Crack: 0.1723
Training Procedure
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e - 05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: polynomial
- training_steps: 10000
Training Results
Training Loss |
Epoch |
Step |
Validation Loss |
Mean Iou |
Mean Accuracy |
Overall Accuracy |
Accuracy Background |
Accuracy Crack |
Iou Background |
Iou Crack |
0.1019 |
1.0 |
251 |
0.5116 |
0.1490 |
0.3280 |
0.3280 |
nan |
0.3280 |
0.0 |
0.2979 |
0.0938 |
2.0 |
502 |
0.4725 |
0.1144 |
0.2400 |
0.2400 |
nan |
0.2400 |
0.0 |
0.2287 |
0.098 |
3.0 |
753 |
0.5117 |
0.1276 |
0.2748 |
0.2748 |
nan |
0.2748 |
0.0 |
0.2552 |
0.1018 |
4.0 |
1004 |
0.3870 |
0.1053 |
0.2254 |
0.2254 |
nan |
0.2254 |
0.0 |
0.2106 |
0.0928 |
5.0 |
1255 |
0.2907 |
0.0772 |
0.1630 |
0.1630 |
nan |
0.1630 |
0.0 |
0.1544 |
0.0936 |
6.0 |
1506 |
0.5220 |
0.1193 |
0.2544 |
0.2544 |
nan |
0.2544 |
0.0 |
0.2385 |
0.077 |
7.0 |
1757 |
0.1608 |
0.0617 |
0.1308 |
0.1308 |
nan |
0.1308 |
0.0 |
0.1235 |
0.0963 |
8.0 |
2008 |
0.1756 |
0.0456 |
0.0923 |
0.0923 |
nan |
0.0923 |
0.0 |
0.0912 |
0.0958 |
9.0 |
2259 |
0.2027 |
0.0862 |
0.1813 |
0.1813 |
nan |
0.1813 |
0.0 |
0.1725 |
0.0755 |
10.0 |
2510 |
0.2327 |
0.0888 |
0.1832 |
0.1832 |
nan |
0.1832 |
0.0 |
0.1776 |
0.0632 |
11.0 |
2761 |
0.2169 |
0.0846 |
0.1863 |
0.1863 |
nan |
0.1863 |
0.0 |
0.1693 |
0.0638 |
12.0 |
3012 |
0.2309 |
0.0852 |
0.1957 |
0.1957 |
nan |
0.1957 |
0.0 |
0.1704 |
0.0509 |
13.0 |
3263 |
0.3209 |
0.1236 |
0.2910 |
0.2910 |
nan |
0.2910 |
0.0 |
0.2472 |
0.0497 |
14.0 |
3514 |
0.3274 |
0.1045 |
0.2354 |
0.2354 |
nan |
0.2354 |
0.0 |
0.2089 |
0.0396 |
15.0 |
3765 |
0.3415 |
0.1005 |
0.2257 |
0.2257 |
nan |
0.2257 |
0.0 |
0.2010 |
0.0373 |
16.0 |
4016 |
0.3530 |
0.1122 |
0.2486 |
0.2486 |
nan |
0.2486 |
0.0 |
0.2244 |
0.0388 |
17.0 |
4267 |
0.3312 |
0.0889 |
0.1974 |
0.1974 |
nan |
0.1974 |
0.0 |
0.1778 |
0.0346 |
18.0 |
4518 |
0.3061 |
0.0903 |
0.2125 |
0.2125 |
nan |
0.2125 |
0.0 |
0.1807 |
0.0296 |
19.0 |
4769 |
0.3223 |
0.1000 |
0.2315 |
0.2315 |
nan |
0.2315 |
0.0 |
0.2000 |
0.0311 |
20.0 |
5020 |
0.3458 |
0.0943 |
0.2237 |
0.2237 |
nan |
0.2237 |
0.0 |
0.1887 |
0.0303 |
21.0 |
5271 |
0.3283 |
0.0975 |
0.2255 |
0.2255 |
nan |
0.2255 |
0.0 |
0.1951 |
0.0249 |
22.0 |
5522 |
0.3387 |
0.0998 |
0.2327 |
0.2327 |
nan |
0.2327 |
0.0 |
0.1996 |
0.0298 |
23.0 |
5773 |
0.3332 |
0.0973 |
0.2242 |
0.2242 |
nan |
0.2242 |
0.0 |
0.1946 |
0.0239 |
24.0 |
6024 |
0.3778 |
0.1146 |
0.2634 |
0.2634 |
nan |
0.2634 |
0.0 |
0.2292 |
0.0238 |
25.0 |
6275 |
0.3250 |
0.0909 |
0.2081 |
0.2081 |
nan |
0.2081 |
0.0 |
0.1818 |
0.0242 |
26.0 |
6526 |
0.3826 |
0.1002 |
0.2285 |
0.2285 |
nan |
0.2285 |
0.0 |
0.2004 |
0.017 |
27.0 |
6777 |
0.3543 |
0.1058 |
0.2367 |
0.2367 |
nan |
0.2367 |
0.0 |
0.2115 |
0.0241 |
28.0 |
7028 |
0.3491 |
0.0915 |
0.2069 |
0.2069 |
nan |
0.2069 |
0.0 |
0.1830 |
0.0203 |
29.0 |
7279 |
0.3354 |
0.0899 |
0.2056 |
0.2056 |
nan |
0.2056 |
0.0 |
0.1798 |
0.0206 |
30.0 |
7530 |
0.3592 |
0.0944 |
0.2165 |
0.2165 |
nan |
0.2165 |
0.0 |
0.1888 |
0.0211 |
31.0 |
7781 |
0.3200 |
0.0943 |
0.2100 |
0.2100 |
nan |
0.2100 |
0.0 |
0.1886 |
0.0209 |
32.0 |
8032 |
0.3401 |
0.0850 |
0.1941 |
0.1941 |
nan |
0.1941 |
0.0 |
0.1701 |
0.0172 |
33.0 |
8283 |
0.3326 |
0.0879 |
0.1986 |
0.1986 |
nan |
0.1986 |
0.0 |
0.1759 |
0.0187 |
34.0 |
8534 |
0.3343 |
0.0869 |
0.1960 |
0.1960 |
nan |
0.1960 |
0.0 |
0.1739 |
0.0181 |
35.0 |
8785 |
0.3223 |
0.0824 |
0.1835 |
0.1835 |
nan |
0.1835 |
0.0 |
0.1648 |
0.0168 |
36.0 |
9036 |
0.3461 |
0.0864 |
0.1933 |
0.1933 |
nan |
0.1933 |
0.0 |
0.1727 |
0.0169 |
37.0 |
9287 |
0.3438 |
0.0848 |
0.1888 |
0.1888 |
nan |
0.1888 |
0.0 |
0.1695 |
0.0182 |
38.0 |
9538 |
0.3506 |
0.0865 |
0.1933 |
0.1933 |
nan |
0.1933 |
0.0 |
0.1730 |
0.0167 |
39.0 |
9789 |
0.3535 |
0.0869 |
0.1946 |
0.1946 |
nan |
0.1946 |
0.0 |
0.1739 |
0.0174 |
39.84 |
10000 |
0.3478 |
0.0862 |
0.1924 |
0.1924 |
nan |
0.1924 |
0.0 |
0.1723 |
Framework Versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.14.4
- Tokenizers 0.13.3
đ License
This model is under the other
license.