đ segformerb5-finetuned-largerImages
This model is a fine - tuned version of the base model, which can effectively perform image segmentation tasks on the JCAI2000/LargerImagesLabelled dataset, achieving high accuracy and performance.
đ Quick Start
This model is a fine - tuned version of [JCAI2000/segformer - b5 - finetuned - 100by100PNG - 50epochs - attempt2 - 100epochs - backgroundclass - 2](https://huggingface.co/JCAI2000/segformer - b5 - finetuned - 100by100PNG - 50epochs - attempt2 - 100epochs - backgroundclass - 2) on the JCAI2000/LargerImagesLabelled dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0724
- Mean Iou: 0.7754
- Mean Accuracy: 0.8589
- Overall Accuracy: 0.9828
- Accuracy Background: 0.9910
- Accuracy Branch: 0.7269
- Iou Background: 0.9824
- Iou Branch: 0.5684
đ Documentation
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e - 05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Mean Iou |
Mean Accuracy |
Overall Accuracy |
Accuracy Background |
Accuracy Branch |
Iou Background |
Iou Branch |
0.0872 |
1.18 |
20 |
0.0678 |
0.6870 |
0.7241 |
0.9784 |
0.9954 |
0.4528 |
0.9781 |
0.3958 |
0.0848 |
2.35 |
40 |
0.0577 |
0.7333 |
0.7908 |
0.9806 |
0.9932 |
0.5884 |
0.9802 |
0.4864 |
0.0549 |
3.53 |
60 |
0.0634 |
0.7485 |
0.8857 |
0.9773 |
0.9834 |
0.7879 |
0.9767 |
0.5203 |
0.0653 |
4.71 |
80 |
0.0493 |
0.7662 |
0.8346 |
0.9827 |
0.9926 |
0.6767 |
0.9823 |
0.5500 |
0.0596 |
5.88 |
100 |
0.0476 |
0.7497 |
0.7920 |
0.9828 |
0.9955 |
0.5885 |
0.9825 |
0.5168 |
0.0458 |
7.06 |
120 |
0.0478 |
0.7636 |
0.8357 |
0.9823 |
0.9921 |
0.6793 |
0.9819 |
0.5452 |
0.0285 |
8.24 |
140 |
0.0458 |
0.7758 |
0.8574 |
0.9829 |
0.9913 |
0.7235 |
0.9825 |
0.5691 |
0.0341 |
9.41 |
160 |
0.0466 |
0.7670 |
0.8376 |
0.9827 |
0.9923 |
0.6829 |
0.9823 |
0.5517 |
0.0369 |
10.59 |
180 |
0.0491 |
0.7699 |
0.8731 |
0.9813 |
0.9885 |
0.7576 |
0.9809 |
0.5589 |
0.0352 |
11.76 |
200 |
0.0465 |
0.7731 |
0.8551 |
0.9826 |
0.9911 |
0.7191 |
0.9822 |
0.5640 |
0.0477 |
12.94 |
220 |
0.0462 |
0.7721 |
0.8415 |
0.9832 |
0.9926 |
0.6905 |
0.9828 |
0.5615 |
0.0404 |
14.12 |
240 |
0.0493 |
0.7704 |
0.8734 |
0.9814 |
0.9886 |
0.7583 |
0.9809 |
0.5599 |
0.0221 |
15.29 |
260 |
0.0458 |
0.7798 |
0.8719 |
0.9828 |
0.9901 |
0.7536 |
0.9823 |
0.5772 |
0.0263 |
16.47 |
280 |
0.0450 |
0.7778 |
0.8509 |
0.9835 |
0.9923 |
0.7096 |
0.9831 |
0.5726 |
0.0364 |
17.65 |
300 |
0.0489 |
0.7756 |
0.8537 |
0.9830 |
0.9917 |
0.7158 |
0.9827 |
0.5686 |
0.02 |
18.82 |
320 |
0.0493 |
0.7713 |
0.8474 |
0.9828 |
0.9918 |
0.7031 |
0.9824 |
0.5602 |
0.0193 |
20.0 |
340 |
0.0481 |
0.7786 |
0.8694 |
0.9827 |
0.9903 |
0.7484 |
0.9823 |
0.5749 |
0.0133 |
21.18 |
360 |
0.0486 |
0.7756 |
0.8552 |
0.9830 |
0.9915 |
0.7189 |
0.9826 |
0.5686 |
0.0163 |
22.35 |
380 |
0.0492 |
0.7768 |
0.8632 |
0.9828 |
0.9907 |
0.7357 |
0.9824 |
0.5713 |
0.0252 |
23.53 |
400 |
0.0510 |
0.7725 |
0.8605 |
0.9823 |
0.9904 |
0.7306 |
0.9819 |
0.5632 |
0.0178 |
24.71 |
420 |
0.0509 |
0.7770 |
0.8665 |
0.9826 |
0.9904 |
0.7427 |
0.9822 |
0.5719 |
0.0167 |
25.88 |
440 |
0.0516 |
0.7748 |
0.8615 |
0.9826 |
0.9906 |
0.7323 |
0.9822 |
0.5675 |
0.0332 |
27.06 |
460 |
0.0507 |
0.7702 |
0.8422 |
0.9829 |
0.9922 |
0.6921 |
0.9825 |
0.5578 |
0.021 |
28.24 |
480 |
0.0522 |
0.7710 |
0.8482 |
0.9827 |
0.9916 |
0.7048 |
0.9823 |
0.5597 |
0.0284 |
29.41 |
500 |
0.0536 |
0.7762 |
0.8643 |
0.9826 |
0.9905 |
0.7380 |
0.9822 |
0.5702 |
0.0174 |
30.59 |
520 |
0.0535 |
0.7739 |
0.8591 |
0.9826 |
0.9908 |
0.7274 |
0.9822 |
0.5657 |
0.0228 |
31.76 |
540 |
0.0527 |
0.7765 |
0.8578 |
0.9830 |
0.9913 |
0.7243 |
0.9826 |
0.5703 |
0.0347 |
32.94 |
560 |
0.0530 |
0.7754 |
0.8534 |
0.9830 |
0.9917 |
0.7151 |
0.9826 |
0.5681 |
0.0182 |
34.12 |
580 |
0.0554 |
0.7764 |
0.8670 |
0.9825 |
0.9902 |
0.7437 |
0.9821 |
0.5706 |
0.0139 |
35.29 |
600 |
0.0521 |
0.7786 |
0.8540 |
0.9834 |
0.9920 |
0.7159 |
0.9830 |
0.5742 |
0.0121 |
36.47 |
620 |
0.0549 |
0.7787 |
0.8728 |
0.9826 |
0.9899 |
0.7557 |
0.9822 |
0.5752 |
0.0191 |
37.65 |
640 |
0.0560 |
0.7766 |
0.8678 |
0.9825 |
0.9902 |
0.7454 |
0.9821 |
0.5711 |
0.0216 |
38.82 |
660 |
0.0553 |
0.7745 |
0.8543 |
0.9829 |
0.9914 |
0.7172 |
0.9825 |
0.5665 |
0.0135 |
40.0 |
680 |
0.0569 |
0.7738 |
0.8640 |
0.9823 |
0.9902 |
0.7379 |
0.9819 |
0.5658 |
0.0167 |
41.18 |
700 |
0.0566 |
0.7765 |
0.8619 |
0.9828 |
0.9908 |
0.7330 |
0.9824 |
0.5707 |
0.0224 |
42.35 |
720 |
0.0570 |
0.7768 |
0.8680 |
0.9825 |
0.9902 |
0.7458 |
0.9821 |
0.5714 |
0.0188 |
43.53 |
740 |
0.0575 |
0.7768 |
0.8630 |
0.9828 |
0.9907 |
0.7353 |
0.9824 |
0.5713 |
0.0338 |
44.71 |
760 |
0.0565 |
0.7783 |
0.8634 |
0.9830 |
0.9909 |
0.7359 |
0.9826 |
0.5741 |
0.0122 |
45.88 |
780 |
0.0585 |
0.7788 |
0.8656 |
0.9829 |
0.9907 |
0.7404 |
0.9825 |
0.5750 |
0.0119 |
47.06 |
800 |
0.0587 |
0.7774 |
0.8639 |
0.9828 |
0.9907 |
0.7371 |
0.9824 |
0.5725 |
0.0086 |
48.24 |
820 |
0.0594 |
0.7777 |
0.8567 |
0.9832 |
0.9916 |
0.7218 |
0.9828 |
0.5726 |
0.0094 |
49.41 |
840 |
0.0597 |
0.7766 |
0.8627 |
0.9828 |
0.9907 |
0.7347 |
0.9823 |
0.5708 |
0.0107 |
50.59 |
860 |
0.0619 |
0.7773 |
0.8624 |
0.9829 |
0.9909 |
0.7338 |
0.9825 |
0.5722 |
0.0175 |
51.76 |
880 |
0.0605 |
0.7752 |
0.8588 |
0.9828 |
0.9910 |
0.7266 |
0.9824 |
0.5681 |
0.0139 |
52.94 |
900 |
0.0620 |
0.7786 |
0.8675 |
0.9828 |
0.9905 |
0.7446 |
0.9824 |
0.5748 |
0.02 |
54.12 |
920 |
0.0633 |
0.7764 |
0.8628 |
0.9827 |
0.9907 |
0.7348 |
0.9823 |
0.5704 |
0.0294 |
55.29 |
940 |
0.0637 |
0.7762 |
0.8584 |
0.9829 |
0.9912 |
0.7256 |
0.9825 |
0.5699 |
0.0175 |
56.47 |
960 |
0.0639 |
0.7789 |
0.8717 |
0.9827 |
0.9900 |
0.7534 |
0.9822 |
0.5755 |
0.008 |
57.65 |
980 |
0.0640 |
0.7797 |
0.8667 |
0.9830 |
0.9907 |
0.7428 |
0.9826 |
0.5768 |
0.0132 |
58.82 |
1000 |
0.0652 |
0.7754 |
0.8657 |
0.9825 |
0.9902 |
0.7412 |
0.9820 |
0.5687 |
0.0339 |
60.0 |
1020 |
0.0640 |
0.7785 |
0.8664 |
0.9828 |
0.9906 |
0.7421 |
0.9824 |
0.5746 |
0.0144 |
61.18 |
1040 |
0.0618 |
0.7804 |
0.8577 |
0.9835 |
0.9919 |
0.7236 |
0.9831 |
0.5778 |
0.0206 |
62.35 |
1060 |
0.0653 |
0.7767 |
0.8636 |
0.9827 |
0.9907 |
0.7366 |
0.9823 |
0.5710 |
0.0165 |
63.53 |
1080 |
0.0651 |
0.7774 |
0.8602 |
0.9830 |
0.9912 |
0.7293 |
0.9826 |
0.5722 |
0.0175 |
64.71 |
1100 |
0.0648 |
0.7758 |
0.8568 |
0.9829 |
0.9913 |
0.7222 |
0.9825 |
0.5690 |
0.0104 |
65.88 |
1120 |
0.0669 |
0.7771 |
0.8618 |
0.9829 |
0.9909 |
0.7327 |
0.9825 |
0.5717 |
0.0191 |
67.06 |
1140 |
0.0662 |
0.7779 |
0.8696 |
0.9826 |
0.9901 |
0.7490 |
0.9822 |
0.5737 |
0.0123 |
68.24 |
1160 |
0.0668 |
0.7775 |
0.8591 |
0.9830 |
0.9913 |
0.7270 |
0.9826 |
0.5723 |
0.0127 |
69.41 |
1180 |
0.0676 |
0.7772 |
0.8637 |
0.9828 |
0.9907 |
0.7366 |
0.9824 |
0.5720 |
0.0092 |
70.59 |
1200 |
0.0673 |
0.7778 |
0.8699 |
0.9826 |
0.9901 |
0.7496 |
0.9822 |
0.5735 |
0.0101 |
71.76 |
1220 |
0.0680 |
0.7761 |
0.8694 |
0.9824 |
0.9899 |
0.7489 |
0.9820 |
0.5703 |
0.0204 |
72.94 |
1240 |
0.0676 |
0.7772 |
0.8640 |
0.9828 |
0.9907 |
0.7373 |
0.9824 |
0.5721 |
0.008 |
74.12 |
1260 |
0.0685 |
0.7768 |
0.8661 |
0.9826 |
0.9904 |
0.7417 |
0.9822 |
0.5714 |
0.0124 |
75.29 |
1280 |
0.0676 |
0.7776 |
0.8648 |
0.9828 |
0.9907 |
0.7390 |
0.9824 |
0.5729 |
0.0134 |
76.47 |
1300 |
0.0689 |
0.7770 |
0.8672 |
0.9826 |
0.9903 |
0.7441 |
0.9822 |
0.5718 |
0.0082 |
77.65 |
1320 |
0.0688 |
0.7755 |
0.8621 |
0.9826 |
0.9907 |
0.7336 |
0.9822 |
0.5687 |
0.0125 |
78.82 |
1340 |
0.0698 |
0.7761 |
0.8655 |
0.9826 |
0.9904 |
0.7407 |
0.9822 |
|
đ License
The model is released under the other
license.