đ safety-utcustom-train-SF-RGBD-b5
This model is a fine - tuned version of [nvidia/mit - b5](https://huggingface.co/nvidia/mit - b5) on the sam1120/safety - utcustom - TRAIN dataset. It offers high - performance image segmentation capabilities, achieving excellent results in safety - related image analysis.
đ Quick Start
This model is ready for use after fine - tuning. You can directly load it for image segmentation tasks on the relevant dataset.
⨠Features
- Fine - tuned: Based on the [nvidia/mit - b5](https://huggingface.co/nvidia/mit - b5) model, fine - tuned on the sam1120/safety - utcustom - TRAIN dataset to better adapt to specific safety - related image segmentation tasks.
- High accuracy: Achieves high accuracy in multiple evaluation metrics on the evaluation set, such as a low loss value and high mean Iou and accuracy values.
đ Documentation
Model Evaluation Results
It achieves the following results on the evaluation set:
- Loss: 0.0867
- Mean Iou: 0.7280
- Mean Accuracy: 0.7762
- Overall Accuracy: 0.9818
- Accuracy Unlabeled: nan
- Accuracy Safe: 0.5578
- Accuracy Unsafe: 0.9947
- Iou Unlabeled: nan
- Iou Safe: 0.4745
- Iou Unsafe: 0.9814
Training and Evaluation Data
More information needed
Training Procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e - 06
- train_batch_size: 15
- eval_batch_size: 15
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
Training results
Training Loss |
Epoch |
Step |
Accuracy Safe |
Accuracy Unlabeled |
Accuracy Unsafe |
Iou Safe |
Iou Unlabeled |
Iou Unsafe |
Validation Loss |
Mean Accuracy |
Mean Iou |
Overall Accuracy |
0.789 |
0.91 |
10 |
0.0203 |
nan |
0.8957 |
0.0095 |
0.0 |
0.8722 |
0.9555 |
0.4580 |
0.2939 |
0.8698 |
0.7579 |
1.82 |
20 |
0.0117 |
nan |
0.9614 |
0.0069 |
0.0 |
0.9338 |
0.8322 |
0.4866 |
0.3136 |
0.9334 |
0.7103 |
2.73 |
30 |
0.0051 |
nan |
0.9893 |
0.0043 |
0.0 |
0.9604 |
0.6729 |
0.4972 |
0.3216 |
0.9602 |
0.676 |
3.64 |
40 |
0.0021 |
nan |
0.9969 |
0.0020 |
0.0 |
0.9675 |
0.5336 |
0.4995 |
0.3232 |
0.9675 |
0.5955 |
4.55 |
50 |
0.0001 |
nan |
0.9993 |
0.0001 |
0.0 |
0.9698 |
0.4440 |
0.4997 |
0.3233 |
0.9698 |
0.5691 |
5.45 |
60 |
0.0000 |
nan |
0.9997 |
0.0000 |
0.0 |
0.9702 |
0.3812 |
0.4999 |
0.3234 |
0.9702 |
0.5067 |
6.36 |
70 |
0.0 |
nan |
0.9996 |
0.0 |
0.0 |
0.9701 |
0.3590 |
0.4998 |
0.3234 |
0.9701 |
0.4656 |
7.27 |
80 |
0.0 |
nan |
0.9999 |
0.0 |
0.0 |
0.9703 |
0.3247 |
0.4999 |
0.3234 |
0.9703 |
0.4227 |
8.18 |
90 |
0.0 |
nan |
0.9998 |
0.0 |
0.0 |
0.9702 |
0.3171 |
0.4999 |
0.3234 |
0.9702 |
0.3898 |
9.09 |
100 |
0.0004 |
nan |
0.9996 |
0.0004 |
0.0 |
0.9701 |
0.3122 |
0.5000 |
0.3235 |
0.9701 |
0.3513 |
10.0 |
110 |
0.0 |
nan |
0.9999 |
0.0 |
0.0 |
0.9703 |
0.2876 |
0.4999 |
0.3234 |
0.9703 |
0.4157 |
10.91 |
120 |
0.0000 |
nan |
0.9998 |
0.0000 |
0.0 |
0.9703 |
0.2820 |
0.4999 |
0.3234 |
0.9703 |
0.3317 |
11.82 |
130 |
0.0 |
nan |
0.9999 |
0.0 |
0.0 |
0.9703 |
0.2693 |
0.4999 |
0.3234 |
0.9703 |
0.321 |
12.73 |
140 |
0.0 |
nan |
0.9999 |
0.0 |
0.0 |
0.9704 |
0.2647 |
0.4999 |
0.3235 |
0.9704 |
0.2887 |
13.64 |
150 |
0.0 |
nan |
0.9999 |
0.0 |
0.0 |
0.9704 |
0.2539 |
0.5000 |
0.3235 |
0.9704 |
0.3008 |
14.55 |
160 |
0.0 |
nan |
0.9999 |
0.0 |
0.0 |
0.9704 |
0.2536 |
0.5000 |
0.3235 |
0.9704 |
0.2853 |
15.45 |
170 |
0.0 |
nan |
0.9999 |
0.0 |
0.0 |
0.9704 |
0.2397 |
0.5000 |
0.3235 |
0.9704 |
0.2684 |
16.36 |
180 |
0.0 |
nan |
0.9999 |
0.0 |
0.0 |
0.9704 |
0.2321 |
0.5000 |
0.3235 |
0.9704 |
0.2585 |
17.27 |
190 |
0.0000 |
nan |
0.9999 |
0.0000 |
0.0 |
0.9704 |
0.2208 |
0.5000 |
0.3235 |
0.9704 |
0.2088 |
18.18 |
200 |
0.0084 |
nan |
0.9997 |
0.0083 |
0.0 |
0.9704 |
0.2011 |
0.5041 |
0.3262 |
0.9704 |
0.2518 |
19.09 |
210 |
0.0468 |
nan |
0.9989 |
0.0451 |
0.0 |
0.9707 |
0.2026 |
0.5228 |
0.3386 |
0.9707 |
0.218 |
20.0 |
220 |
0.0879 |
nan |
0.9984 |
0.0834 |
nan |
0.9714 |
0.1889 |
0.5431 |
0.5274 |
0.9715 |
0.2046 |
20.91 |
230 |
0.1931 |
nan |
0.9969 |
0.1752 |
nan |
0.9730 |
0.1847 |
0.5950 |
0.5741 |
0.9732 |
0.2147 |
21.82 |
240 |
0.2042 |
nan |
0.9968 |
0.1850 |
nan |
0.9733 |
0.1766 |
0.6005 |
0.5791 |
0.9734 |
0.188 |
22.73 |
250 |
0.2020 |
nan |
0.9972 |
0.1849 |
nan |
0.9735 |
0.1726 |
0.5996 |
0.5792 |
0.9737 |
0.2175 |
23.64 |
260 |
0.1898 |
nan |
0.9974 |
0.1748 |
nan |
0.9734 |
0.1706 |
0.5936 |
0.5741 |
0.9735 |
0.2059 |
24.55 |
270 |
0.3006 |
nan |
0.9962 |
0.2670 |
nan |
0.9754 |
0.1689 |
0.6484 |
0.6212 |
0.9756 |
0.1776 |
25.45 |
280 |
0.2870 |
nan |
0.9967 |
0.2587 |
nan |
0.9755 |
0.1612 |
0.6418 |
0.6171 |
0.9757 |
0.1585 |
26.36 |
290 |
0.4254 |
nan |
0.9944 |
0.3593 |
nan |
0.9773 |
0.1537 |
0.7099 |
0.6683 |
0.9776 |
0.1588 |
27.27 |
300 |
0.2798 |
nan |
0.9970 |
0.2548 |
nan |
0.9756 |
0.1527 |
0.6384 |
0.6152 |
0.9758 |
0.153 |
28.18 |
310 |
0.4288 |
nan |
0.9946 |
0.3646 |
nan |
0.9776 |
0.1452 |
0.7117 |
0.6711 |
0.9779 |
0.1623 |
29.09 |
320 |
0.4401 |
nan |
0.9945 |
0.3726 |
nan |
0.9778 |
0.1442 |
0.7173 |
0.6752 |
0.9781 |
0.1603 |
30.0 |
330 |
0.4050 |
nan |
0.9958 |
0.3562 |
nan |
0.9781 |
0.1407 |
0.7004 |
0.6671 |
0.9784 |
0.1694 |
30.91 |
340 |
0.4585 |
nan |
0.9948 |
0.3911 |
nan |
0.9786 |
0.1343 |
0.7266 |
0.6849 |
0.9789 |
0.1585 |
31.82 |
350 |
0.3861 |
nan |
0.9962 |
0.3433 |
nan |
0.9779 |
0.1353 |
0.6912 |
0.6606 |
0.9782 |
0.1342 |
32.73 |
360 |
0.4963 |
nan |
0.9939 |
0.4132 |
nan |
0.9789 |
0.1338 |
0.7451 |
0.6961 |
0.9792 |
0.1358 |
33.64 |
370 |
0.5048 |
nan |
0.9937 |
0.4182 |
nan |
0.9789 |
0.1342 |
0.7493 |
0.6986 |
0.9793 |
0.1493 |
34.55 |
380 |
0.4809 |
nan |
0.9946 |
0.4080 |
nan |
0.9791 |
0.1297 |
0.7377 |
0.6936 |
0.9794 |
0.1435 |
35.45 |
390 |
0.5658 |
nan |
0.9923 |
0.4518 |
nan |
0.9794 |
0.1271 |
0.7791 |
0.7156 |
0.9797 |
0.1305 |
36.36 |
400 |
0.4157 |
nan |
0.9968 |
0.3758 |
nan |
0.9793 |
0.1225 |
0.7062 |
0.6776 |
0.9796 |
0.1496 |
37.27 |
410 |
0.5385 |
nan |
0.9934 |
0.4420 |
nan |
0.9796 |
0.1237 |
0.7659 |
0.7108 |
0.9799 |
0.1445 |
38.18 |
420 |
0.5763 |
nan |
0.9924 |
0.4615 |
nan |
0.9798 |
0.1207 |
0.7843 |
0.7206 |
0.9801 |
0.1307 |
39.09 |
430 |
0.4853 |
nan |
0.9956 |
0.4244 |
nan |
0.9803 |
0.1194 |
0.7404 |
0.7023 |
0.9806 |
0.1379 |
40.0 |
440 |
0.5722 |
nan |
0.9922 |
0.4557 |
nan |
0.9795 |
0.1174 |
0.7822 |
0.7176 |
0.9798 |
0.1202 |
40.91 |
450 |
0.5399 |
nan |
0.9943 |
0.4544 |
nan |
0.9805 |
0.1143 |
0.7671 |
0.7175 |
0.9809 |
0.1239 |
41.82 |
460 |
0.5580 |
nan |
0.9932 |
0.4558 |
nan |
0.9800 |
0.1150 |
0.7756 |
0.7179 |
0.9803 |
0.1183 |
42.73 |
470 |
0.4777 |
nan |
0.9961 |
0.4236 |
nan |
0.9805 |
0.1129 |
0.7369 |
0.7021 |
0.9808 |
0.1202 |
43.64 |
480 |
0.5933 |
nan |
0.9928 |
0.4793 |
nan |
0.9806 |
0.1119 |
0.7930 |
0.7300 |
0.9810 |
0.1276 |
44.55 |
490 |
0.5425 |
nan |
0.9942 |
0.4561 |
nan |
0.9806 |
0.1131 |
0.7683 |
0.7183 |
0.9809 |
0.1172 |
45.45 |
500 |
0.6272 |
nan |
0.9898 |
0.4700 |
nan |
0.9787 |
0.1135 |
0.8085 |
0.7244 |
0.9791 |
0.1288 |
46.36 |
510 |
0.4236 |
nan |
0.9974 |
0.3898 |
nan |
0.9802 |
0.1105 |
0.7105 |
0.6850 |
0.9804 |
0.1185 |
47.27 |
520 |
0.6035 |
nan |
0.9914 |
0.4711 |
nan |
0.9796 |
0.1130 |
0.7975 |
0.7254 |
0.9800 |
0.1045 |
48.18 |
530 |
0.5750 |
nan |
0.9930 |
0.4679 |
nan |
0.9804 |
0.1102 |
0.7840 |
0.7241 |
0.9807 |
0.1211 |
49.09 |
540 |
0.5812 |
nan |
0.9929 |
0.4715 |
nan |
0.9804 |
0.1069 |
0.7870 |
0.7260 |
0.9808 |
0.1206 |
50.0 |
550 |
0.5221 |
nan |
0.9953 |
0.4528 |
nan |
0.9811 |
0.1071 |
0.7587 |
0.7169 |
0.9814 |
0.1193 |
50.91 |
560 |
0.4956 |
nan |
0.9961 |
0.4398 |
nan |
0.9811 |
0.1053 |
0.7459 |
0.7105 |
0.9814 |
0.1116 |
51.82 |
570 |
0.5257 |
nan |
0.9951 |
0.4528 |
nan |
0.9809 |
0.1043 |
0.7604 |
0.7169 |
0.9812 |
0.1218 |
52.73 |
580 |
0.5936 |
nan |
0.9922 |
0.4724 |
nan |
0.9801 |
0.1078 |
0.7929 |
0.7262 |
0.9804 |
0.1284 |
53.64 |
590 |
0.5872 |
nan |
0.9924 |
0.4696 |
nan |
0.9801 |
0.1090 |
0.7907 |
0.7249 |
0.9804 |
đ License
Other