Model Overview
Model Features
Model Capabilities
Use Cases
đ segformer-b0-finetuned-segments-food-oct-24v2
This model is a fine - tuned version of [nvidia/mit - b0](https://huggingface.co/nvidia/mit - b0) on the EduardoPacheco/FoodSeg103 dataset. It offers image segmentation capabilities for food - related images, with specific evaluation metrics to measure its performance.
đ Quick Start
This model is ready to use for image segmentation tasks. You can load it using the transformers
library and start making predictions on food images.
đ Documentation
Model Evaluation Results
This model achieves the following results on the evaluation set:
Metric | Value |
---|---|
Loss | 3.0289 |
Mean Iou | 0.0104 |
Mean Accuracy | 0.0245 |
Overall Accuracy | 0.1659 |
Accuracy Background | nan |
Accuracy Candy | 0.0 |
Accuracy Egg tart | 0.0 |
Accuracy French fries | 0.0008 |
Accuracy Chocolate | 0.0 |
Accuracy Biscuit | 0.0 |
Accuracy Popcorn | 0.0 |
Accuracy Pudding | 0.0 |
Accuracy Ice cream | 0.0 |
Accuracy Cheese butter | 0.0 |
Accuracy Cake | 0.0 |
Accuracy Wine | 0.0 |
Accuracy Milkshake | 0.0 |
Accuracy Coffee | 0.0 |
Accuracy Juice | 0.0 |
Accuracy Milk | 0.0 |
Accuracy Tea | 0.0 |
Accuracy Almond | 0.0 |
Accuracy Red beans | 0.0 |
Accuracy Cashew | 0.0 |
Accuracy Dried cranberries | 0.0 |
Accuracy Soy | 0.0 |
Accuracy Walnut | 0.0 |
Accuracy Peanut | 0.0 |
Accuracy Egg | 0.0 |
Accuracy Apple | 0.0 |
Accuracy Date | 0.0 |
Accuracy Apricot | 0.0 |
Accuracy Avocado | 0.0 |
Accuracy Banana | 0.0 |
Accuracy Strawberry | 0.0029 |
Accuracy Cherry | 0.0 |
Accuracy Blueberry | 0.0 |
Accuracy Raspberry | 0.0 |
Accuracy Mango | 0.0 |
Accuracy Olives | 0.0 |
Accuracy Peach | 0.0 |
Accuracy Lemon | 0.0 |
Accuracy Pear | 0.0 |
Accuracy Fig | 0.0 |
Accuracy Pineapple | 0.0 |
Accuracy Grape | 0.0 |
Accuracy Kiwi | 0.0 |
Accuracy Melon | 0.0 |
Accuracy Orange | 0.0 |
Accuracy Watermelon | 0.0 |
Accuracy Steak | 0.0135 |
Accuracy Pork | 0.0 |
Accuracy Chicken duck | 0.0029 |
Accuracy Sausage | 0.0 |
Accuracy Fried meat | 0.0 |
Accuracy Lamb | 0.0 |
Accuracy Sauce | 0.3123 |
Accuracy Crab | 0.0 |
Accuracy Fish | 0.0 |
Accuracy Shellfish | 0.0 |
Accuracy Shrimp | 0.0 |
Accuracy Soup | 0.0 |
Accuracy Bread | 0.6999 |
Accuracy Corn | 0.0061 |
Accuracy Hamburg | 0.0 |
Accuracy Pizza | 0.0 |
Accuracy hanamaki baozi | 0.0 |
Accuracy Wonton dumplings | 0.0 |
Accuracy Pasta | 0.0 |
Accuracy Noodles | 0.0 |
Accuracy Rice | 0.0026 |
Accuracy Pie | 0.1014 |
Accuracy Tofu | 0.0 |
Accuracy Eggplant | 0.0 |
Accuracy Potato | 0.0000 |
Accuracy Garlic | 0.0 |
Accuracy Cauliflower | 0.0037 |
Accuracy Tomato | 0.1511 |
Accuracy Kelp | 0.0 |
Accuracy Seaweed | 0.0 |
Accuracy Spring onion | 0.0 |
Accuracy Rape | 0.0 |
Accuracy Ginger | 0.0 |
Accuracy Okra | 0.0 |
Accuracy Lettuce | 0.0 |
Accuracy Pumpkin | 0.0 |
Accuracy Cucumber | 0.0 |
Accuracy White radish | 0.0 |
Accuracy Carrot | 0.5854 |
Accuracy Asparagus | 0.0 |
Accuracy Bamboo shoots | 0.0 |
Accuracy Broccoli | 0.4701 |
Accuracy Celery stick | 0.0 |
Accuracy Cilantro mint | 0.0 |
Accuracy Snow peas | 0.0 |
Accuracy cabbage | 0.0 |
Accuracy Bean sprouts | 0.0 |
Accuracy Onion | 0.0 |
Accuracy Pepper | 0.0 |
Accuracy Green beans | 0.0 |
Accuracy French beans | 0.0 |
Accuracy King oyster mushroom | nan |
Accuracy Shiitake | nan |
Accuracy Enoki mushroom | nan |
Accuracy Oyster mushroom | nan |
Accuracy White button mushroom | nan |
Accuracy Salad | nan |
Accuracy Other ingredients | nan |
Iou Background | 0.0 |
Iou Candy | 0.0 |
Iou Egg tart | 0.0 |
Iou French fries | 0.0006 |
Iou Chocolate | 0.0 |
Iou Biscuit | 0.0 |
Iou Popcorn | 0.0 |
Iou Pudding | 0.0 |
Iou Ice cream | 0.0 |
Iou Cheese butter | 0.0 |
Iou Cake | 0.0 |
Iou Wine | 0.0 |
Iou Milkshake | 0.0 |
Iou Coffee | 0.0 |
Iou Juice | 0.0 |
Iou Milk | 0.0 |
Iou Tea | 0.0 |
Iou Almond | 0.0 |
Iou Red beans | 0.0 |
Iou Cashew | 0.0 |
Iou Dried cranberries | 0.0 |
Iou Soy | 0.0 |
Iou Walnut | 0.0 |
Iou Peanut | 0.0 |
Iou Egg | 0.0 |
Iou Apple | 0.0 |
Iou Date | 0.0 |
Iou Apricot | 0.0 |
Iou Avocado | 0.0 |
Iou Banana | 0.0 |
Iou Strawberry | 0.0006 |
Iou Cherry | 0.0 |
Iou Blueberry | 0.0 |
Iou Raspberry | 0.0 |
Iou Mango | 0.0 |
Iou Olives | 0.0 |
Iou Peach | 0.0 |
Iou Lemon | 0.0 |
Iou Pear | 0.0 |
Iou Fig | 0.0 |
Iou Pineapple | 0.0 |
Iou Grape | 0.0 |
Iou Kiwi | 0.0 |
Iou Melon | 0.0 |
Iou Orange | 0.0 |
Iou Watermelon | 0.0 |
Iou Steak | 0.0053 |
Iou Pork | 0.0 |
Iou Chicken duck | 0.0026 |
Iou Sausage | 0.0 |
Iou Fried meat | 0.0 |
Iou Lamb | 0.0 |
Iou Sauce | 0.2623 |
Iou Crab | 0.0 |
Iou Fish | 0.0 |
Iou Shellfish | 0.0 |
Iou Shrimp | 0.0 |
Iou Soup | 0.0 |
Iou Bread | 0.1701 |
Iou Corn | 0.0001 |
Iou Hamburg | 0.0 |
Iou Pizza | 0.0 |
Iou hanamaki baozi | 0.0 |
Iou Wonton dumplings | 0.0 |
Iou Pasta | 0.0 |
Iou Noodles | 0.0 |
Iou Rice | 0.0024 |
Iou Pie | 0.0942 |
Iou Tofu | 0.0 |
Iou Eggplant | 0.0 |
Iou Potato | 0.0000 |
Iou Garlic | 0.0 |
Iou Cauliflower | 0.0002 |
Iou Tomato | 0.1304 |
Iou Kelp | 0.0 |
Iou Seaweed | 0.0 |
Iou Spring onion | 0.0 |
Iou Rape | 0.0 |
Iou Ginger | 0.0 |
Iou Okra | 0.0 |
Iou Lettuce | 0.0 |
Iou Pumpkin | 0.0 |
Iou Cucumber | 0.0 |
Iou White radish | 0.0 |
Iou Carrot | 0.2222 |
Iou Asparagus | 0.0 |
Iou Bamboo shoots | 0.0 |
Iou Broccoli | 0.1323 |
Iou Celery stick | 0.0 |
Iou Cilantro mint | 0.0 |
Iou Snow peas | 0.0 |
Iou cabbage | 0.0 |
Iou Bean sprouts | 0.0 |
Iou Onion | 0.0 |
Iou Pepper | 0.0 |
Iou Green beans | 0.0 |
Iou French beans | 0.0 |
Iou King oyster mushroom | nan |
Iou Shiitake | nan |
Iou Enoki mushroom | nan |
Iou Oyster mushroom | nan |
Iou White button mushroom | 0.0 |
Iou Salad | nan |
Iou Other ingredients | nan |
Training and Evaluation Data
The model was trained on the EduardoPacheco/FoodSeg103 dataset. However, detailed information about the training and evaluation data is not provided in the original document.
Training Procedure
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e - 05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9, 0.999) and epsilon = 1e - 08 and optimizer_args = No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training Results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Candy | Accuracy Egg tart | Accuracy French fries | Accuracy Chocolate | Accuracy Biscuit | Accuracy Popcorn | Accuracy Pudding | Accuracy Ice cream | Accuracy Cheese butter | Accuracy Cake | Accuracy Wine | Accuracy Milkshake | Accuracy Coffee | Accuracy Juice | Accuracy Milk | Accuracy Tea | Accuracy Almond | Accuracy Red beans | Accuracy Cashew | Accuracy Dried cranberries | Accuracy Soy | Accuracy Walnut | Accuracy Peanut | Accuracy Egg | Accuracy Apple | Accuracy Date | Accuracy Apricot | Accuracy Avocado | Accuracy Banana | Accuracy Strawberry | Accuracy Cherry | Accuracy Blueberry | Accuracy Raspberry | Accuracy Mango | Accuracy Olives | Accuracy Peach | Accuracy Lemon | Accuracy Pear | Accuracy Fig | Accuracy Pineapple | Accuracy Grape | Accuracy Kiwi | Accuracy Melon | Accuracy Orange | Accuracy Watermelon | Accuracy Steak | Accuracy Pork | Accuracy Chicken duck | Accuracy Sausage | Accuracy Fried meat | Accuracy Lamb | Accuracy Sauce | Accuracy Crab | Accuracy Fish | Accuracy Shellfish | Accuracy Shrimp | Accuracy Soup | Accuracy Bread | Accuracy Corn | Accuracy Hamburg | Accuracy Pizza | Accuracy hanamaki baozi | Accuracy Wonton dumplings | Accuracy Pasta | Accuracy Noodles | Accuracy Rice | Accuracy Pie | Accuracy Tofu | Accuracy Eggplant | Accuracy Potato | Accuracy Garlic | Accuracy Cauliflower | Accuracy Tomato | Accuracy Kelp | Accuracy Seaweed | Accuracy Spring onion | Accuracy Rape | Accuracy Ginger | Accuracy Okra | Accuracy Lettuce | Accuracy Pumpkin | Accuracy Cucumber | Accuracy White radish | Accuracy Carrot | Accuracy Asparagus | Accuracy Bamboo shoots | Accuracy Broccoli | Accuracy Celery stick | Accuracy Cilantro mint | Accuracy Snow peas | Accuracy cabbage | Accuracy Bean sprouts | Accuracy Onion | Accuracy Pepper | Accuracy Green beans | Accuracy French beans | Accuracy King oyster mushroom | Accuracy Shiitake | Accuracy Enoki mushroom | Accuracy Oyster mushroom | Accuracy White button mushroom | Accuracy Salad | Accuracy Other ingredients | Iou Background | Iou Candy | Iou Egg tart | Iou French fries | Iou Chocolate | Iou Biscuit | Iou Popcorn | Iou Pudding | Iou Ice cream | Iou Cheese butter | Iou Cake | Iou Wine | Iou Milkshake | Iou Coffee | Iou Juice | Iou Milk | Iou Tea | Iou Almond | Iou Red beans | Iou Cashew | Iou Dried cranberries | Iou Soy | Iou Walnut | Iou Peanut | Iou Egg | Iou Apple | Iou Date | Iou Apricot | Iou Avocado | Iou Banana | Iou Strawberry | Iou Cherry | Iou Blueberry | Iou Raspberry | Iou Mango | Iou Olives | Iou Peach | Iou Lemon | Iou Pear | Iou Fig | Iou Pineapple | Iou Grape | Iou Kiwi | Iou Melon | Iou Orange | Iou Watermelon | Iou Steak | Iou Pork | Iou Chicken duck | Iou Sausage | Iou Fried meat | Iou Lamb | Iou Sauce | Iou Crab | Iou Fish | Iou Shellfish | Iou Shrimp | Iou Soup | Iou Bread | Iou Corn | Iou Hamburg | Iou Pizza | Iou hanamaki baozi | Iou Wonton dumplings | Iou Pasta | Iou Noodles | Iou Rice | Iou Pie | Iou Tofu | Iou Eggplant | Iou Potato | Iou Garlic | Iou Cauliflower | Iou Tomato | Iou Kelp | Iou Seaweed | Iou Spring onion | Iou Rape | Iou Ginger | Iou Okra | Iou Lettuce | Iou Pumpkin | Iou Cucumber | Iou White radish | Iou Carrot | Iou Asparagus | Iou Bamboo shoots | Iou Broccoli | Iou Celery stick | Iou Cilantro mint | Iou Snow peas | Iou cabbage | Iou Bean sprouts | Iou Onion | Iou Pepper | Iou Green beans | Iou French beans | Iou King oyster mushroom | Iou Shiitake | Iou Enoki mushroom | Iou Oyster mushroom | Iou White button mushroom | Iou Salad | Iou Other ingredients | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:-----------------:|:---------------------:|:------------------:|:----------------:|:----------------:|:----------------:|:------------------:|:----------------------:|:-------------:|:-------------:|:------------------:|:---------------:|:--------------:|:-------------:|:------------:|:---------------:|:------------------:|:---------------:|:--------------------------:|:------------:|:---------------:|:---------------:|:------------:|:--------------:|:-------------:|:----------------:|:----------------:|:---------------:|:-------------------:|:---------------:|:------------------:|:------------------:|:--------------:|:---------------:|:--------------:|:--------------:|:-------------:|:------------:|:------------------:|:--------------:|:-------------:|:--------------:|:---------------:|:-------------------:|:--------------:|:-------------:|:---------------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:-------------:|:-------------:|:------------------:|:---------------:|:-------------:|:--------------:|:-------------:|:----------------:|:--------------:|:------------------------:|:-------------------------:|:--------------:|:----------------:|:-------------:|:------------:|:-------------:|:-----------------:|:---------------:|:---------------:|:--------------------:|:---------------:|:-------------:|:----------------:|:---------------------:|:-------------:|:---------------:|:-------------:|:----------------:|:----------------:|:-----------------:|:---------------------:|:---------------:|:------------------:|:----------------------:|:-----------------:|:---------------------:|:----------------------:|:------------------:|:-----------------:|:---------------------:|:--------------:|:---------------:|:--------------------:|:---------------------:|:-----------------------------:|:-----------------:|:-----------------------:|:------------------------:|:------------------------------:|:--------------:|:--------------------------:|:--------------:|:---------:|:------------:|:----------------:|:-------------:|:-----------:|:-----------:|:-----------:|:-------------:|:-----------------:|:--------:|:--------:|:-------------:|:----------:|:---------:|:--------:|:-------:|:----------:|:-------------:|:----------:|:---------------------:|:-------:|:----------:|:----------:|:-------:|:---------:|:--------:|:-----------:|:-----------:|:----------:|:--------------:|:----------:|:-------------:|:-------------:|:---------:|:----------:|:---------:|:---------:|:--------:|:-------:|:-------------:|:---------:|:--------:|:---------:|:----------:|:--------------:|:---------:|:--------:|:----------------:|:-----------:|:--------------:|:--------:|:---------:|:--------:|:--------:|:-------------:|:----------:|:--------:|:---------:|:--------:|:-----------:|:---------:|:-------------------:|:--------------------:|:---------:|:-----------:|:--------:|:-------:|:--------:|:------------:|:----------:|:----------:|:---------------:|:----------:|:--------:|:-----------:|:----------------:|:--------:|:----------:|:--------:|:-----------:|:-----------:|:------------:|:----------------:|:----------:|:-------------:|:-----------------:|:------------:|:----------------:|:-------------:|
đ License
The model is under an "other" license. Specific details about this license are not provided in the original document.









