đ Segformer Model Card
This is a model card for the Segformer model, which is used for image segmentation tasks. It provides details on how to load the trained model, its initialization parameters, and the dataset used.
đ Quick Start
You can quickly start using the Segformer model by following these steps:
- Click the button below to open the Colab notebook for inference with the pre - trained model.

- Install the required libraries:
pip install -U segmentation_models_pytorch albumentations
- Run the inference code:
import torch
import requests
import numpy as np
import albumentations as A
import segmentation_models_pytorch as smp
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = "smp-hub/segformer-b5-1024x1024-city-160k"
model = smp.from_pretrained(checkpoint).eval().to(device)
preprocessing = A.Compose.from_pretrained(checkpoint)
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
image = Image.open(requests.get(url, stream=True).raw)
np_image = np.array(image)
normalized_image = preprocessing(image=np_image)["image"]
input_tensor = torch.as_tensor(normalized_image)
input_tensor = input_tensor.permute(2, 0, 1).unsqueeze(0)
input_tensor = input_tensor.to(device)
with torch.no_grad():
output_mask = model(input_tensor)
mask = torch.nn.functional.interpolate(
output_mask, size=(image.height, image.width), mode="bilinear", align_corners=False
)
mask = mask.argmax(1).cpu().numpy()
đģ Usage Examples
Basic Usage
The above code in the "Quick Start" section shows the basic usage of loading a pre - trained Segformer model, preprocessing an image, performing inference, and post - processing the output mask.
đĻ Installation
To use this model, you need to install the following libraries:
pip install -U segmentation_models_pytorch albumentations
đ Documentation
Model init parameters
The following are the initialization parameters for the model:
model_init_params = {
"encoder_name": "mit_b5",
"encoder_depth": 5,
"encoder_weights": None,
"decoder_segmentation_channels": 768,
"in_channels": 3,
"classes": 19,
"activation": None,
"aux_params": None
}
Dataset
The model is trained on the Cityscapes dataset.
More Information
- Library: https://github.com/qubvel/segmentation_models.pytorch
- Docs: https://smp.readthedocs.io/en/latest/
- License: https://github.com/NVlabs/SegFormer/blob/master/LICENSE
This model has been pushed to the Hub using the PytorchModelHubMixin
đ License
The license information can be found at: https://github.com/NVlabs/SegFormer/blob/master/LICENSE