đ mit-b0_corm
This model is a fine - tuned version of nvidia/mit-b0, designed for image segmentation tasks, achieving high accuracy on the evaluation set.
đ Quick Start
This model is a fine - tuned version of nvidia/mit-b0 on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0433
- Mean Iou: 0.9210
- Mean Accuracy: 0.9571
- Overall Accuracy: 0.9853
- Accuracy Background: 0.9977
- Accuracy Corm: 0.9360
- Accuracy Damage: 0.9377
- Iou Background: 0.9944
- Iou Corm: 0.8762
- Iou Damage: 0.8923
đ§ Technical Details
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e - 05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 40
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Mean Iou |
Mean Accuracy |
Overall Accuracy |
Accuracy Background |
Accuracy Corm |
Accuracy Damage |
Iou Background |
Iou Corm |
Iou Damage |
0.933 |
0.6061 |
20 |
1.0299 |
0.3591 |
0.6054 |
0.6910 |
0.7236 |
0.1098 |
0.9827 |
0.7236 |
0.0867 |
0.2671 |
0.6505 |
1.2121 |
40 |
0.6909 |
0.6522 |
0.8240 |
0.9013 |
0.9328 |
0.5651 |
0.9740 |
0.9328 |
0.4509 |
0.5728 |
0.4133 |
1.8182 |
60 |
0.4184 |
0.7567 |
0.8872 |
0.9394 |
0.9609 |
0.7307 |
0.9701 |
0.9607 |
0.6218 |
0.6875 |
0.3299 |
2.4242 |
80 |
0.3451 |
0.8351 |
0.9306 |
0.9617 |
0.9751 |
0.8924 |
0.9243 |
0.9748 |
0.7569 |
0.7735 |
0.2594 |
3.0303 |
100 |
0.2506 |
0.8703 |
0.9412 |
0.9727 |
0.9862 |
0.8989 |
0.9384 |
0.9852 |
0.8019 |
0.8237 |
0.2253 |
3.6364 |
120 |
0.2006 |
0.8851 |
0.9403 |
0.9779 |
0.9939 |
0.8672 |
0.9599 |
0.9915 |
0.8207 |
0.8430 |
0.2222 |
4.2424 |
140 |
0.1654 |
0.8990 |
0.9490 |
0.9805 |
0.9946 |
0.9446 |
0.9079 |
0.9920 |
0.8438 |
0.8612 |
0.1347 |
4.8485 |
160 |
0.1413 |
0.9048 |
0.9508 |
0.9819 |
0.9956 |
0.9334 |
0.9234 |
0.9928 |
0.8526 |
0.8689 |
0.1366 |
5.4545 |
180 |
0.1155 |
0.9094 |
0.9516 |
0.9829 |
0.9966 |
0.9258 |
0.9325 |
0.9933 |
0.8583 |
0.8765 |
0.1121 |
6.0606 |
200 |
0.1086 |
0.8938 |
0.9447 |
0.9801 |
0.9961 |
0.9628 |
0.8753 |
0.9933 |
0.8392 |
0.8487 |
0.0982 |
6.6667 |
220 |
0.0963 |
0.9115 |
0.9524 |
0.9835 |
0.9972 |
0.9374 |
0.9227 |
0.9938 |
0.8626 |
0.8780 |
0.0993 |
7.2727 |
240 |
0.0892 |
0.9094 |
0.9513 |
0.9832 |
0.9968 |
0.9001 |
0.9571 |
0.9940 |
0.8570 |
0.8773 |
0.0813 |
7.8788 |
260 |
0.0842 |
0.9127 |
0.9543 |
0.9837 |
0.9966 |
0.9380 |
0.9281 |
0.9939 |
0.8643 |
0.8798 |
0.1059 |
8.4848 |
280 |
0.0774 |
0.9152 |
0.9541 |
0.9842 |
0.9973 |
0.9258 |
0.9391 |
0.9940 |
0.8673 |
0.8843 |
0.082 |
9.0909 |
300 |
0.0729 |
0.9159 |
0.9541 |
0.9843 |
0.9975 |
0.9294 |
0.9355 |
0.9940 |
0.8681 |
0.8854 |
0.0725 |
9.6970 |
320 |
0.0692 |
0.9162 |
0.9544 |
0.9844 |
0.9975 |
0.9247 |
0.9411 |
0.9941 |
0.8686 |
0.8861 |
0.0814 |
10.3030 |
340 |
0.0687 |
0.9161 |
0.9541 |
0.9844 |
0.9975 |
0.9155 |
0.9492 |
0.9942 |
0.8675 |
0.8865 |
0.076 |
10.9091 |
360 |
0.0640 |
0.9157 |
0.9555 |
0.9843 |
0.9968 |
0.9219 |
0.9479 |
0.9941 |
0.8680 |
0.8849 |
0.07 |
11.5152 |
380 |
0.0633 |
0.9166 |
0.9553 |
0.9845 |
0.9973 |
0.9375 |
0.9310 |
0.9941 |
0.8698 |
0.8859 |
0.0674 |
12.1212 |
400 |
0.0611 |
0.9176 |
0.9549 |
0.9847 |
0.9977 |
0.9217 |
0.9453 |
0.9943 |
0.8704 |
0.8881 |
0.0638 |
12.7273 |
420 |
0.0601 |
0.9116 |
0.9522 |
0.9836 |
0.9977 |
0.9529 |
0.9059 |
0.9941 |
0.8641 |
0.8768 |
0.0566 |
13.3333 |
440 |
0.0582 |
0.9176 |
0.9561 |
0.9847 |
0.9972 |
0.9322 |
0.9387 |
0.9943 |
0.8714 |
0.8872 |
0.0582 |
13.9394 |
460 |
0.0614 |
0.9077 |
0.9502 |
0.9829 |
0.9976 |
0.9583 |
0.8948 |
0.9941 |
0.8588 |
0.8700 |
0.0555 |
14.5455 |
480 |
0.0561 |
0.9146 |
0.9534 |
0.9841 |
0.9978 |
0.9481 |
0.9142 |
0.9941 |
0.8679 |
0.8817 |
0.053 |
15.1515 |
500 |
0.0540 |
0.9182 |
0.9551 |
0.9848 |
0.9977 |
0.9185 |
0.9492 |
0.9943 |
0.8707 |
0.8895 |
0.059 |
15.7576 |
520 |
0.0549 |
0.9180 |
0.9565 |
0.9848 |
0.9970 |
0.9248 |
0.9478 |
0.9943 |
0.8711 |
0.8887 |
0.0484 |
16.3636 |
540 |
0.0529 |
0.9177 |
0.9563 |
0.9847 |
0.9973 |
0.9405 |
0.9311 |
0.9943 |
0.8721 |
0.8866 |
0.0559 |
16.9697 |
560 |
0.0510 |
0.9192 |
0.9565 |
0.9850 |
0.9974 |
0.9268 |
0.9453 |
0.9943 |
0.8729 |
0.8904 |
0.0542 |
17.5758 |
580 |
0.0512 |
0.9190 |
0.9569 |
0.9850 |
0.9973 |
0.9351 |
0.9382 |
0.9944 |
0.8733 |
0.8894 |
0.0451 |
18.1818 |
600 |
0.0505 |
0.9184 |
0.9557 |
0.9848 |
0.9977 |
0.9428 |
0.9265 |
0.9943 |
0.8729 |
0.8880 |
0.05 |
18.7879 |
620 |
0.0499 |
0.9178 |
0.9542 |
0.9848 |
0.9979 |
0.9098 |
0.9549 |
0.9943 |
0.8691 |
0.8899 |
0.063 |
19.3939 |
640 |
0.0491 |
0.9190 |
0.9560 |
0.9850 |
0.9975 |
0.9221 |
0.9483 |
0.9943 |
0.8723 |
0.8904 |
0.0484 |
20.0 |
660 |
0.0501 |
0.9185 |
0.9569 |
0.9849 |
0.9972 |
0.9427 |
0.9308 |
0.9944 |
0.8732 |
0.8880 |
0.0527 |
20.6061 |
680 |
0.0492 |
0.9186 |
0.9561 |
0.9849 |
0.9976 |
0.9430 |
0.9276 |
0.9943 |
0.8732 |
0.8884 |
0.0583 |
21.2121 |
700 |
0.0476 |
0.9195 |
0.9563 |
0.9851 |
0.9976 |
0.9208 |
0.9506 |
0.9944 |
0.8730 |
0.8911 |
0.0557 |
21.8182 |
720 |
0.0488 |
0.9188 |
0.9565 |
0.9850 |
0.9973 |
0.9191 |
0.9531 |
0.9945 |
0.8723 |
0.8896 |
0.0458 |
22.4242 |
740 |
0.0481 |
0.9194 |
0.9568 |
0.9851 |
0.9973 |
0.9242 |
0.9489 |
0.9944 |
0.8729 |
0.8909 |
0.042 |
23.0303 |
760 |
0.0472 |
0.9202 |
0.9570 |
0.9852 |
0.9975 |
0.9326 |
0.9409 |
0.9944 |
0.8749 |
0.8911 |
0.0459 |
23.6364 |
780 |
0.0468 |
0.9191 |
0.9565 |
0.9850 |
0.9976 |
0.9423 |
0.9295 |
0.9944 |
0.8740 |
0.8889 |
0.0491 |
24.2424 |
800 |
0.0464 |
0.9204 |
0.9568 |
0.9852 |
0.9977 |
0.9361 |
0.9366 |
0.9944 |
0.8753 |
0.8914 |
0.0548 |
24.8485 |
820 |
0.0454 |
0.9201 |
0.9565 |
0.9852 |
0.9976 |
0.9244 |
0.9475 |
0.9944 |
0.8740 |
0.8917 |
0.0447 |
25.4545 |
840 |
0.0473 |
0.9176 |
0.9558 |
0.9847 |
0.9976 |
0.9477 |
0.9222 |
0.9944 |
0.8723 |
0.8863 |
0.0457 |
26.0606 |
860 |
0.0468 |
0.9203 |
0.9567 |
0.9852 |
0.9976 |
0.9270 |
0.9456 |
0.9944 |
0.8745 |
0.8922 |
0.0468 |
26.6667 |
880 |
0.0454 |
0.9201 |
0.9572 |
0.9852 |
0.9974 |
0.9403 |
0.9341 |
0.9944 |
0.8753 |
0.8905 |
0.0433 |
27.2727 |
900 |
0.0452 |
0.9208 |
0.9563 |
0.9853 |
0.9980 |
0.9339 |
0.9371 |
0.9943 |
0.8759 |
0.8923 |
0.0438 |
27.8788 |
920 |
0.0452 |
0.9208 |
0.9574 |
0.9853 |
0.9975 |
0.9352 |
0.9396 |
0.9944 |
0.8760 |
0.8920 |
0.0446 |
28.4848 |
940 |
0.0447 |
0.9210 |
0.9568 |
0.9853 |
0.9978 |
0.9349 |
0.9377 |
0.9943 |
0.8760 |
0.8926 |
0.0492 |
29.0909 |
960 |
0.0452 |
0.9211 |
0.9568 |
0.9853 |
0.9978 |
0.9352 |
0.9374 |
0.9943 |
0.8762 |
0.8928 |
0.0481 |
29.6970 |
980 |
0.0456 |
0.9195 |
0.9567 |
0.9851 |
0.9976 |
0.9443 |
0.9283 |
0.9944 |
0.8747 |
0.8893 |
0.0405 |
30.3030 |
1000 |
0.0447 |
0.9206 |
0.9574 |
0.9853 |
0.9975 |
0.9391 |
0.9355 |
0.9944 |
0.8758 |
0.8916 |
0.0505 |
30.9091 |
1020 |
0.0443 |
0.9210 |
0.9570 |
0.9853 |
0.9978 |
0.9370 |
0.9364 |
0.9944 |
0.8763 |
0.8923 |
0.047 |
31.5152 |
1040 |
0.0450 |
0.9204 |
0.9568 |
0.9853 |
0.9976 |
0.9223 |
0.9505 |
0.9945 |
0.8744 |
0.8923 |
0.0548 |
32.1212 |
1060 |
0.0452 |
0.9192 |
0.9561 |
0.9850 |
0.9978 |
0.9442 |
0.9261 |
0.9944 |
0.8744 |
0.8889 |
0.0445 |
32.7273 |
1080 |
0.0442 |
0.9208 |
0.9573 |
0.9853 |
0.9975 |
0.9320 |
0.9426 |
0.9944 |
0.8758 |
0.8921 |
0.0539 |
33.3333 |
1100 |
0.0435 |
0.9208 |
0.9571 |
0.9853 |
0.9976 |
0.9359 |
0.9379 |
0.9944 |
0.8758 |
0.8921 |
0.0383 |
33.9394 |
1120 |
0.0459 |
0.9171 |
0.9549 |
0.9846 |
0.9979 |
0.9493 |
0.9175 |
0.9943 |
0.8716 |
0.8853 |
0.0478 |
34.5455 |
1140 |
0.0443 |
0.9203 |
0.9572 |
0.9852 |
0.9974 |
0.9246 |
0.9496 |
0.9945 |
0.8748 |
0.8916 |
0.0432 |
35.1515 |
1160 |
0.0442 |
0.9210 |
0.9571 |
0.9853 |
0.9977 |
0.9349 |
0.9388 |
0.9944 |
0.8762 |
0.8924 |
0.0468 |
35.7576 |
1180 |
0.0439 |
0.9208 |
0.9572 |
0.9853 |
0.9976 |
0.9371 |
0.9368 |
0.9944 |
0.8761 |
0.8919 |
0.0475 |
36.3636 |
1200 |
0.0443 |
0.9209 |
0.9571 |
0.9853 |
0.9977 |
0.9371 |
0.9364 |
0.9944 |
0.8762 |
0.8921 |
0.0388 |
36.9697 |
1220 |
0.0436 |
0.9208 |
0.9573 |
0.9853 |
0.9976 |
0.9371 |
0.9373 |
0.9944 |
0.8761 |
0.8919 |
0.0468 |
37.5758 |
1240 |
0.0431 |
0.9208 |
0.9574 |
0.9853 |
0.9975 |
0.9343 |
0.9405 |
0.9944 |
0.8760 |
0.8921 |
0.0426 |
38.1818 |
1260 |
0.0445 |
0.9205 |
0.9570 |
0.9852 |
0.9977 |
0.9415 |
0.9318 |
0.9944 |
0.8758 |
0.8912 |
0.0549 |
38.7879 |
1280 |
0.0436 |
0.9209 |
0.9571 |
0.9853 |
0.9977 |
0.9373 |
0.9362 |
0.9944 |
0.8761 |
0.8921 |
0.045 |
39.3939 |
1300 |
0.0438 |
0.9208 |
0.9573 |
0.9853 |
0.9976 |
0.9381 |
0.9362 |
0.9944 |
0.8760 |
0.8919 |
0.0287 |
40.0 |
1320 |
0.0433 |
0.9210 |
0.9571 |
0.9853 |
0.9977 |
0.9360 |
0.9377 |
0.9944 |
0.8762 |
0.8923 |
Framework versions
- Transformers 4.44.1
- Pytorch 2.6.0+cpu
- Datasets 2.21.0
- Tokenizers 0.19.1
đ License
The license type of this model is other.
Property |
Details |
Library Name |
transformers |
Model Type |
mit - b0_corm |
Base Model |
nvidia/mit - b0 |
Tags |
vision, image - segmentation, generated_from_trainer |