🚀 panels_detection_rtdetr
This model is a fine - tuned version of PekingU/rtdetr_r101vd_coco_o365 on the None dataset. It can achieve specific evaluation metrics, which is valuable for relevant detection tasks.
📚 Documentation
Model Performance
It achieves the following results on the evaluation set:
- Loss: 9.5718
- Map: 0.5617
- Map 50: 0.6631
- Map 75: 0.6137
- Map Small: -1.0
- Map Medium: 0.3451
- Map Large: 0.5935
- Mar 1: 0.6546
- Mar 10: 0.7877
- Mar 100: 0.8058
- Mar Small: -1.0
- Mar Medium: 0.5802
- Mar Large: 0.8672
- Map Radar (small): 0.3509
- Mar 100 Radar (small): 0.8077
- Map Ship management system (small): 0.6748
- Mar 100 Ship management system (small): 0.8933
- Map Radar (large): 0.5846
- Mar 100 Radar (large): 0.8624
- Map Ship management system (large): 0.7577
- Mar 100 Ship management system (large): 0.9341
- Map Ship management system (top): 0.789
- Mar 100 Ship management system (top): 0.8356
- Map Ecdis (large): 0.3281
- Mar 100 Ecdis (large): 0.7652
- Map Visual observation (small): 0.585
- Mar 100 Visual observation (small): 0.902
- Map Ecdis (small): 0.7635
- Mar 100 Ecdis (small): 0.8967
- Map Ship management system (table top): 0.6306
- Mar 100 Ship management system (table top): 0.7882
- Map Thruster control: 0.4949
- Mar 100 Thruster control: 0.7447
- Map Visual observation (left): 0.6062
- Mar 100 Visual observation (left): 0.8395
- Map Visual observation (mid): 0.7946
- Mar 100 Visual observation (mid): 0.8901
- Map Visual observation (right): 0.7446
- Mar 100 Visual observation (right): 0.8966
- Map Bow thruster: 0.2392
- Mar 100 Bow thruster: 0.5167
- Map Me telegraph: 0.0825
- Mar 100 Me telegraph: 0.5143
Training Procedure
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e - 05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon = 1e - 08 and optimizer_args = No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 7
Training Results
Training Loss |
Epoch |
Step |
Validation Loss |
Map |
Map 50 |
Map 75 |
Map Small |
Map Medium |
Map Large |
Mar 1 |
Mar 10 |
Mar 100 |
Mar Small |
Mar Medium |
Mar Large |
Map Radar (small) |
Mar 100 Radar (small) |
Map Ship management system (small) |
Mar 100 Ship management system (small) |
Map Radar (large) |
Mar 100 Radar (large) |
Map Ship management system (large) |
Mar 100 Ship management system (large) |
Map Ship management system (top) |
Mar 100 Ship management system (top) |
Map Ecdis (large) |
Mar 100 Ecdis (large) |
Map Visual observation (small) |
Mar 100 Visual observation (small) |
Map Ecdis (small) |
Mar 100 Ecdis (small) |
Map Ship management system (table top) |
Mar 100 Ship management system (table top) |
Map Thruster control |
Mar 100 Thruster control |
Map Visual observation (left) |
Mar 100 Visual observation (left) |
Map Visual observation (mid) |
Mar 100 Visual observation (mid) |
Map Visual observation (right) |
Mar 100 Visual observation (right) |
Map Bow thruster |
Mar 100 Bow thruster |
Map Me telegraph |
Mar 100 Me telegraph |
14.2599 |
1.0 |
699 |
9.6242 |
0.4769 |
0.5404 |
0.5144 |
-1.0 |
0.2274 |
0.5416 |
0.5866 |
0.755 |
0.7709 |
-1.0 |
0.4884 |
0.8359 |
0.7408 |
0.92 |
0.672 |
0.8827 |
0.7054 |
0.9504 |
0.8329 |
0.926 |
0.7965 |
0.8692 |
0.3419 |
0.9571 |
0.2734 |
0.8627 |
0.1207 |
0.6933 |
0.4841 |
0.7059 |
0.3541 |
0.6947 |
0.5303 |
0.8961 |
0.8393 |
0.9342 |
0.2629 |
0.8466 |
0.1988 |
0.3583 |
0.0011 |
0.0667 |
8.9356 |
2.0 |
1398 |
9.1941 |
0.5527 |
0.6652 |
0.6044 |
-1.0 |
0.3212 |
0.574 |
0.6512 |
0.7882 |
0.8015 |
-1.0 |
0.6608 |
0.8085 |
0.6989 |
0.8862 |
0.5273 |
0.8053 |
0.7683 |
0.9145 |
0.7209 |
0.9073 |
0.7995 |
0.8644 |
0.4929 |
0.833 |
0.4034 |
0.8392 |
0.5519 |
0.8333 |
0.6453 |
0.8618 |
0.4221 |
0.6447 |
0.5734 |
0.8474 |
0.8714 |
0.8973 |
0.412 |
0.8448 |
0.3154 |
0.5333 |
0.0874 |
0.5095 |
8.1388 |
3.0 |
2097 |
9.7524 |
0.535 |
0.6013 |
0.5854 |
-1.0 |
0.2545 |
0.574 |
0.6219 |
0.7425 |
0.7612 |
-1.0 |
0.538 |
0.8183 |
0.6358 |
0.8292 |
0.5844 |
0.8013 |
0.6721 |
0.8368 |
0.7422 |
0.8829 |
0.7144 |
0.8096 |
0.4904 |
0.8562 |
0.7623 |
0.9078 |
0.5667 |
0.89 |
0.6409 |
0.7824 |
0.1853 |
0.5763 |
0.5453 |
0.7789 |
0.8362 |
0.9 |
0.5862 |
0.9207 |
0.0384 |
0.3833 |
0.0248 |
0.2619 |
7.5951 |
4.0 |
2796 |
9.3983 |
0.5991 |
0.7001 |
0.6587 |
-1.0 |
0.3745 |
0.6167 |
0.6957 |
0.8036 |
0.8188 |
-1.0 |
0.6611 |
0.8746 |
0.603 |
0.8538 |
0.626 |
0.88 |
0.6211 |
0.8496 |
0.8218 |
0.9382 |
0.8062 |
0.8433 |
0.3917 |
0.8804 |
0.6202 |
0.851 |
0.8307 |
0.9433 |
0.555 |
0.8147 |
0.5143 |
0.8 |
0.6609 |
0.8579 |
0.887 |
0.9369 |
0.7174 |
0.8759 |
0.2732 |
0.5333 |
0.0579 |
0.4238 |
7.1786 |
5.0 |
3495 |
9.1194 |
0.6117 |
0.7144 |
0.6689 |
-1.0 |
0.3458 |
0.6476 |
0.6904 |
0.8136 |
0.8324 |
-1.0 |
0.6649 |
0.8777 |
0.5 |
0.8538 |
0.6723 |
0.8733 |
0.7272 |
0.8795 |
0.778 |
0.9398 |
0.7803 |
0.8385 |
0.3389 |
0.8509 |
0.6484 |
0.8804 |
0.7914 |
0.9433 |
0.7053 |
0.8059 |
0.6257 |
0.8447 |
0.5945 |
0.8658 |
0.8411 |
0.9009 |
0.7812 |
0.9397 |
0.2863 |
0.5792 |
0.1053 |
0.4905 |
7.1386 |
6.0 |
4194 |
9.9394 |
0.5353 |
0.634 |
0.5921 |
-1.0 |
0.3062 |
0.5549 |
0.6429 |
0.7691 |
0.7874 |
-1.0 |
0.5638 |
0.8364 |
0.3431 |
0.7631 |
0.6563 |
0.8813 |
0.5789 |
0.8393 |
0.6941 |
0.9236 |
0.721 |
0.7712 |
0.4061 |
0.8018 |
0.5685 |
0.8725 |
0.7656 |
0.91 |
0.5317 |
0.8 |
0.5194 |
0.7684 |
0.5191 |
0.8039 |
0.7994 |
0.8586 |
0.6714 |
0.8793 |
0.2223 |
0.4958 |
0.0333 |
0.4429 |
7.0912 |
7.0 |
4893 |
9.5718 |
0.5617 |
0.6631 |
0.6137 |
-1.0 |
0.3451 |
0.5935 |
0.6546 |
0.7877 |
0.8058 |
-1.0 |
0.5802 |
0.8672 |
0.3509 |
0.8077 |
0.6748 |
0.8933 |
0.5846 |
0.8624 |
0.7577 |
0.9341 |
0.789 |
0.8356 |
0.3281 |
0.7652 |
0.585 |
0.902 |
0.7635 |
0.8967 |
0.6306 |
0.7882 |
0.4949 |
0.7447 |
0.6062 |
0.8395 |
0.7946 |
0.8901 |
0.7446 |
0.8966 |
0.2392 |
0.5167 |
0.0825 |
0.5143 |
Framework Versions
- Transformers 4.46.0
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.20.1
📄 License
This model is released under the apache - 2.0 license.