Rt Detr Finetuned Cppe 5 3k Steps
R
Rt Detr Finetuned Cppe 5 3k Steps
Developed by qubvel-hf
This model is an object detection model fine-tuned on the medical protective equipment dataset CPPE-5, based on PekingU/rtdetr_r50vd_coco_o365
Downloads 13
Release Time : 12/2/2024
Model Overview
Used for detecting protective equipment in medical scenarios, including five categories: protective clothing, face shields, gloves, goggles, and masks
Model Features
Medical Protective Equipment Detection
Specialized detection capability optimized for medical scenarios
Multi-scale Object Detection
Supports detection of small, medium, and large-sized objects
Efficient Training
Optimized training process using mixed precision training and linear learning rate scheduler
Model Capabilities
Medical protective equipment recognition
Multi-category object detection
Real-time object detection
Use Cases
Medical Safety
Personal Protective Equipment Compliance Check
Automatically detects whether medical staff are wearing complete protective equipment
Protective clothing detection mAP reached 0.4438
Medical Facility Safety Monitoring
Real-time monitoring of protective equipment usage in hospitals and other facilities
Overall recall@100 reached 0.5014
🚀 rt-detr-finetuned-cppe-5-3k-steps
This model is a fine - tuned version of PekingU/rtdetr_r50vd_coco_o365 on the cppe - 5 dataset. It is designed for object - detection tasks in the field of computer vision.
✨ Features
This fine - tuned model can achieve the following results on the evaluation set:
- Loss: 9.1012
- Map: 0.2813
- Map 50: 0.5271
- Map 75: 0.2685
- Map Small: 0.0879
- Map Medium: 0.2399
- Map Large: 0.4613
- Mar 1: 0.3061
- Mar 10: 0.4664
- Mar 100: 0.5014
- Mar Small: 0.2985
- Mar Medium: 0.4465
- Mar Large: 0.6698
- Map Coverall: 0.4438
- Mar 100 Coverall: 0.6815
- Map Face Shield: 0.2983
- Mar 100 Face Shield: 0.4924
- Map Gloves: 0.2305
- Mar 100 Gloves: 0.4817
- Map Goggles: 0.1591
- Mar 100 Goggles: 0.3969
- Map Mask: 0.275
- Mar 100 Mask: 0.4547
📚 Documentation
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e - 05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon = 1e - 08 and optimizer_args = No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
41.0803 | 1.0 | 107 | 14.7670 | 0.0685 | 0.1413 | 0.0589 | 0.0211 | 0.0496 | 0.1045 | 0.0968 | 0.2251 | 0.2568 | 0.127 | 0.201 | 0.3699 | 0.2045 | 0.3964 | 0.0514 | 0.3013 | 0.0134 | 0.1777 | 0.0031 | 0.1938 | 0.0701 | 0.2147 |
18.7124 | 2.0 | 214 | 11.5242 | 0.1664 | 0.3287 | 0.148 | 0.0451 | 0.1291 | 0.265 | 0.1963 | 0.3451 | 0.3986 | 0.2461 | 0.3493 | 0.5659 | 0.3441 | 0.5757 | 0.1158 | 0.4367 | 0.1193 | 0.3446 | 0.0676 | 0.2754 | 0.1854 | 0.3604 |
16.6913 | 3.0 | 321 | 12.2486 | 0.1399 | 0.3041 | 0.1087 | 0.029 | 0.1187 | 0.2072 | 0.1663 | 0.3153 | 0.3776 | 0.1937 | 0.3363 | 0.5251 | 0.3001 | 0.5545 | 0.1189 | 0.443 | 0.0832 | 0.3326 | 0.0431 | 0.2092 | 0.1543 | 0.3484 |
15.7025 | 4.0 | 428 | 11.5488 | 0.1819 | 0.3681 | 0.1619 | 0.0474 | 0.1853 | 0.2567 | 0.2206 | 0.351 | 0.3984 | 0.1976 | 0.3882 | 0.4911 | 0.3217 | 0.5752 | 0.1295 | 0.3709 | 0.1665 | 0.3241 | 0.1069 | 0.3292 | 0.1847 | 0.3924 |
14.7758 | 5.0 | 535 | 12.9331 | 0.1605 | 0.3126 | 0.1484 | 0.0402 | 0.1512 | 0.2597 | 0.1985 | 0.3135 | 0.3435 | 0.1853 | 0.3037 | 0.4472 | 0.2383 | 0.4365 | 0.14 | 0.3304 | 0.1715 | 0.3402 | 0.0775 | 0.2569 | 0.1754 | 0.3538 |
14.4905 | 6.0 | 642 | 10.1206 | 0.219 | 0.4286 | 0.1979 | 0.0502 | 0.1962 | 0.3665 | 0.2516 | 0.4058 | 0.4494 | 0.216 | 0.4008 | 0.5944 | 0.404 | 0.673 | 0.1247 | 0.3975 | 0.2031 | 0.4402 | 0.1247 | 0.2985 | 0.2387 | 0.4378 |
13.4909 | 7.0 | 749 | 9.6988 | 0.245 | 0.4741 | 0.2326 | 0.0588 | 0.2417 | 0.3664 | 0.2647 | 0.4201 | 0.4572 | 0.2248 | 0.4316 | 0.5821 | 0.4571 | 0.6806 | 0.1374 | 0.3405 | 0.1979 | 0.4473 | 0.159 | 0.3831 | 0.2736 | 0.4347 |
13.2245 | 8.0 | 856 | 9.7353 | 0.2375 | 0.4622 | 0.227 | 0.0528 | 0.2347 | 0.3748 | 0.2658 | 0.4291 | 0.4815 | 0.2621 | 0.4423 | 0.6434 | 0.4127 | 0.6707 | 0.1807 | 0.4696 | 0.2293 | 0.4821 | 0.1382 | 0.3462 | 0.2265 | 0.4391 |
12.7879 | 9.0 | 963 | 9.2718 | 0.2604 | 0.4832 | 0.2502 | 0.0654 | 0.2323 | 0.4055 | 0.2818 | 0.4304 | 0.4788 | 0.2339 | 0.4387 | 0.6353 | 0.4797 | 0.6959 | 0.1558 | 0.4329 | 0.2371 | 0.4884 | 0.1658 | 0.3354 | 0.2633 | 0.4413 |
12.2499 | 10.0 | 1070 | 9.5461 | 0.2547 | 0.4956 | 0.2404 | 0.0582 | 0.2249 | 0.418 | 0.2725 | 0.443 | 0.4933 | 0.2713 | 0.4359 | 0.6505 | 0.4224 | 0.7059 | 0.2289 | 0.4544 | 0.2279 | 0.4915 | 0.1501 | 0.3862 | 0.2443 | 0.4284 |
12.1284 | 11.0 | 1177 | 9.6199 | 0.2611 | 0.5056 | 0.2322 | 0.0731 | 0.2459 | 0.3958 | 0.2646 | 0.4262 | 0.4704 | 0.2817 | 0.4256 | 0.598 | 0.4442 | 0.6568 | 0.211 | 0.4354 | 0.2404 | 0.475 | 0.1468 | 0.3446 | 0.2633 | 0.44 |
11.9831 | 12.0 | 1284 | 9.3471 | 0.2556 | 0.5007 | 0.2397 | 0.0889 | 0.2476 | 0.3971 | 0.2822 | 0.4573 | 0.5045 | 0.3054 | 0.4747 | 0.6499 | 0.4483 | 0.6806 | 0.1954 | 0.4911 | 0.2084 | 0.4786 | 0.1867 | 0.4292 | 0.2391 | 0.4431 |
11.8266 | 13.0 | 1391 | 9.5850 | 0.2329 | 0.4647 | 0.2113 | 0.0657 | 0.2009 | 0.3955 | 0.2667 | 0.4193 | 0.4586 | 0.2653 | 0.3996 | 0.6083 | 0.4132 | 0.6329 | 0.1537 | 0.4063 | 0.2098 | 0.4768 | 0.1427 | 0.3569 | 0.2451 | 0.42 |
11.6433 | 14.0 | 1498 | 9.7106 | 0.2353 | 0.472 | 0.2148 | 0.0697 | 0.2149 | 0.3916 | 0.2711 | 0.4243 | 0.4627 | 0.2665 | 0.4189 | 0.6111 | 0.3916 | 0.6248 | 0.1831 | 0.419 | 0.2157 | 0.4437 | 0.1391 | 0.3785 | 0.2469 | 0.4476 |
11.8852 | 15.0 | 1605 | 10.8775 | 0.2088 | 0.4137 | 0.1993 | 0.0564 | 0.1788 | 0.3643 | 0.2388 | 0.3642 | 0.3879 | 0.2372 | 0.3324 | 0.5194 | 0.3625 | 0.5649 | 0.1555 | 0.3304 | 0.1954 | 0.4138 | 0.1242 | 0.2615 | 0.2062 | 0.3689 |
11.4842 | 16.0 | 1712 | 9.3761 | 0.2585 | 0.5013 | 0.2454 | 0.0648 | 0.2309 | 0.4104 | 0.2752 | 0.4329 | 0.4671 | 0.2841 | 0.4057 | 0.6237 | 0.4659 | 0.6676 | 0.2002 | 0.4329 | 0.2453 | 0.4701 | 0.1407 | 0.3308 | 0.2402 | 0.4342 |
11.1006 | 17.0 | 1819 | 9.2561 | 0.2683 | 0.5134 | 0.2582 | 0.0777 | 0.234 | 0.435 | 0.2884 | 0.4437 | 0.4887 | 0.2774 | 0.4407 | 0.6443 | 0.4587 | 0.6586 | 0.2317 | 0.4519 | 0.2363 | 0.4647 | 0.1587 | 0.4015 | 0.2559 | 0.4667 |
10.9366 | 18.0 | 1926 | 9.3039 | 0.2626 | 0.4996 | 0.251 | 0.0669 | 0.2413 | 0.4333 | 0.2889 | 0.4399 | 0.4722 | 0.2662 | 0.4241 | 0.6188 | 0.4581 | 0.6572 | 0.1891 | 0.4076 | 0.2421 | 0.467 | 0.1489 | 0.3692 | 0.2748 | 0.46 |
10.7473 | 19.0 | 2033 | 9.4736 | 0.2649 | 0.5138 | 0.2541 | 0.082 | 0.2386 | 0.4461 | 0.2883 | 0.4318 | 0.4722 | 0.2856 | 0.4252 | 0.6165 | 0.4438 | 0.655 | 0.2526 | 0.4519 | 0.222 | 0.4598 | 0.1568 | 0.3492 | 0.2494 | 0.4453 |
10.7605 | 20.0 | 2140 | 9.2816 | 0.269 | 0.5104 | 0.2442 | 0.0765 | 0.2403 | 0.4417 | 0.293 | 0.4501 | 0.4914 | 0.2695 | 0.4398 | 0.6531 | 0.4441 | 0.6523 | 0.2429 | 0.4582 | 0.2428 | 0.4951 | 0.1547 | 0.3862 | 0.2606 | 0.4653 |
10.7865 | 21.0 | 2247 | 9.3265 | 0.2757 | 0.5368 | 0.2621 | 0.0731 | 0.2484 | 0.4379 | 0.2912 | 0.443 | 0.4793 | 0.2896 | 0.441 | 0.6178 | 0.4589 | 0.6455 | 0.2726 | 0.481 | 0.2327 | 0.4768 | 0.1692 | 0.3354 | 0.245 | 0.4578 |
10.5171 | 22.0 | 2354 | 9.5773 | 0.2554 | 0.506 | 0.2458 | 0.0866 | 0.2131 | 0.435 | 0.2866 | 0.4385 | 0.4752 | 0.3181 | 0.4226 | 0.621 | 0.4187 | 0.6405 | 0.2536 | 0.4633 | 0.2051 | 0.4545 | 0.1539 | 0.3738 | 0.2457 | 0.444 |
10.7464 | 23.0 | 2461 | 9.4040 | 0.2544 | 0.5064 | 0.2414 | 0.0697 | 0.2089 | 0.4424 | 0.288 | 0.4357 | 0.4732 | 0.2358 | 0.4181 | 0.641 | 0.4118 | 0.6468 | 0.2571 | 0.4709 | 0.1966 | 0.4504 | 0.1574 | 0.36 | 0.2489 | 0.4378 |
10.5963 | 24.0 | 2568 | 9.1140 | 0.272 | 0.5293 | 0.2615 | 0.0838 | 0.2326 | 0.4477 | 0.2921 | 0.4473 | 0.4877 | 0.3056 | 0.4231 | 0.65 | 0.4342 | 0.6572 | 0.2733 | 0.4772 | 0.226 | 0.4808 | 0.1649 | 0.3631 | 0.2618 | 0.46 |
10.4877 | 25.0 | 2675 | 9.2811 | 0.2738 | 0.5409 | 0.2496 | 0.0811 | 0.2321 | 0.4614 | 0.2978 | 0.4528 | 0.4859 | 0.2937 | 0.4261 | 0.6431 | 0.4298 | 0.6527 | 0.2947 | 0.5025 | 0.2465 | 0.4714 | 0.1532 | 0.3662 | 0.2445 | 0.4364 |
10.5136 | 26.0 | 2782 | 9.2285 | 0.2809 | 0.5362 | 0.2521 | 0.0764 | 0.2341 | 0.4694 | 0.3014 | 0.4547 | 0.4955 | 0.2986 | 0.4321 | 0.6618 | 0.4342 | 0.6725 | 0.2799 | 0.4911 | 0.247 | 0.4701 | 0.1726 | 0.3862 | 0.271 | 0.4578 |
10.4462 | 27.0 | 2889 | 9.1017 | 0.2803 | 0.5419 | 0.2617 | 0.0914 | 0.2296 | 0.4515 | 0.2973 | 0.4663 | 0.5034 | 0.3121 | 0.4374 | 0.6604 | 0.4503 | 0.6842 | 0.2965 | 0.4899 | 0.2318 | 0.4853 | 0.1656 | 0.4077 | 0.2574 | 0.4498 |
10.3325 | 28.0 | 2996 | 9.0687 | 0.2849 | 0.5344 | 0.256 | 0.0947 | 0.2288 | 0.4799 | 0.3076 | 0.4598 | 0.4947 | 0.3034 | 0.4193 | 0.6639 | 0.4589 | 0.6752 | 0.2833 | 0.4709 | 0.2302 | 0.4754 | 0.1863 | 0.3969 | 0.2658 | 0.4551 |
10.3327 | 29.0 | 3103 | 9.1673 | 0.2818 | 0.5364 | 0.264 | 0.0932 | 0.2415 | 0.4556 | 0.3083 | 0.4606 | 0.4995 | 0.3186 | 0.432 | 0.659 | 0.4379 | 0.6784 | 0.2937 | 0.4772 | 0.2241 | 0.4647 | 0.18 | 0.4185 | 0.2731 | 0.4587 |
10.296 | 30.0 | 3210 | 9.1012 | 0.2813 | 0.5271 | 0.2685 | 0.0879 | 0.2399 | 0.4613 | 0.3061 | 0.4664 | 0.5014 | 0.2985 | 0.4465 | 0.6698 | 0.4438 | 0.6815 | 0.2983 | 0.4924 | 0.2305 | 0.4817 | 0.1591 | 0.3969 | 0.275 | 0.4547 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.5.0+cu118
- Datasets 2.21.0
- Tokenizers 0.20.0
📄 License
This project is licensed under the Apache - 2.0 license.
Table Transformer Detection
MIT
A table detection model based on the DETR architecture, specifically designed for extracting tables from unstructured documents
Object Detection
Transformers

T
microsoft
2.6M
349
Grounding Dino Base
Apache-2.0
Grounding DINO is an open-set object detection model that achieves zero-shot object detection capabilities by combining the DINO detector with a text encoder.
Object Detection
Transformers

G
IDEA-Research
1.1M
87
Grounding Dino Tiny
Apache-2.0
Grounding DINO is an open-set object detection model that combines the DINO detector with grounding pre-training, enabling zero-shot object detection.
Object Detection
Transformers

G
IDEA-Research
771.67k
74
Detr Resnet 50
Apache-2.0
DETR is an end-to-end object detection model based on Transformer architecture, using ResNet-50 as the backbone network and trained on the COCO dataset.
Object Detection
Transformers

D
facebook
505.27k
857
Detr Resnet 101
Apache-2.0
DETR is an end-to-end object detection model using Transformer architecture, employing ResNet-101 as the backbone network and trained on the COCO dataset.
Object Detection
Transformers

D
facebook
262.94k
119
Detr Doc Table Detection
Apache-2.0
Document table detection model based on DETR architecture for detecting bordered and borderless tables in documents
Object Detection
Transformers

D
TahaDouaji
233.45k
59
Yolos Small
Apache-2.0
A vision Transformer (ViT)-based object detection model trained with DETR loss function, achieving excellent performance on the COCO dataset.
Object Detection
Transformers

Y
hustvl
154.46k
63
Yolos Tiny
Apache-2.0
YOLOS model fine-tuned on the COCO 2017 object detection dataset, utilizing Vision Transformer architecture for efficient object detection.
Object Detection
Transformers

Y
hustvl
144.58k
266
Rtdetr R50vd Coco O365
Apache-2.0
RT-DETR is the first real-time end-to-end object detector, achieving 53.1% AP and 108 FPS on the COCO dataset through an efficient hybrid encoder and uncertainty-minimized query selection mechanism.
Object Detection
Transformers English

R
PekingU
111.17k
11
Rtdetr R101vd Coco O365
Apache-2.0
The first real-time end-to-end object detector based on Transformer architecture, eliminating the need for non-maximum suppression, surpassing YOLO series in speed and accuracy
Object Detection
Transformers English

R
PekingU
106.81k
7
Featured Recommended AI Models