đ Model card for eva02_large_patch14_224.mim_m38m
An EVA02 feature / representation model. Pretrained on Merged-38M (IN-22K, CC12M, CC3M, COCO (train), ADE20K (train), Object365, and OpenImages) with masked image modeling (using EVA-CLIP as a MIM teacher) by paper authors.
EVA-02 models are vision transformers with mean pooling, SwiGLU, Rotary Position Embeddings (ROPE), and extra LN in MLP (for Base & Large).
â ī¸ Important Note
timm
checkpoints are float32 for consistency with other models. Original checkpoints are float16 or bfloat16 in some cases, see originals if that's preferred.
đ Quick Start
This section provides a high - level overview of the model and how to use it.
⨠Features
- It's an EVA02 feature / representation model.
- Pretrained on a large - scale Merged - 38M dataset.
- Utilizes masked image modeling with EVA - CLIP as a MIM teacher.
- Vision transformers with advanced components like mean pooling, SwiGLU, ROPE, and extra LN in MLP.
đĻ Installation
The timm
library is required to use this model. You can install it via pip:
pip install timm
đģ Usage Examples
Basic Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('eva02_large_patch14_224.mim_m38m', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Advanced Usage
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'eva02_large_patch14_224.mim_m38m',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
đ Documentation
Model Details
Property |
Details |
Model Type |
Image classification / feature backbone |
Params (M) |
303.3 |
GMACs |
81.1 |
Activations (M) |
97.2 |
Image size |
224 x 224 |
Papers |
- EVA - 02: A Visual Representation for Neon Genesis: https://arxiv.org/abs/2303.11331 - EVA - CLIP: Improved Training Techniques for CLIP at Scale: https://arxiv.org/abs/2303.15389 |
Original |
- https://github.com/baaivision/EVA - https://huggingface.co/Yuxin - CV/EVA - 02 |
Pretrain Dataset |
ImageNet - 22k |
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
model |
top1 |
top5 |
param_count |
img_size |
eva02_large_patch14_448.mim_m38m_ft_in22k_in1k |
90.054 |
99.042 |
305.08 |
448 |
eva02_large_patch14_448.mim_in22k_ft_in22k_in1k |
89.946 |
99.01 |
305.08 |
448 |
eva_giant_patch14_560.m30m_ft_in22k_in1k |
89.792 |
98.992 |
1014.45 |
560 |
eva02_large_patch14_448.mim_in22k_ft_in1k |
89.626 |
98.954 |
305.08 |
448 |
eva02_large_patch14_448.mim_m38m_ft_in1k |
89.57 |
98.918 |
305.08 |
448 |
eva_giant_patch14_336.m30m_ft_in22k_in1k |
89.56 |
98.956 |
1013.01 |
336 |
eva_giant_patch14_336.clip_ft_in1k |
89.466 |
98.82 |
1013.01 |
336 |
eva_large_patch14_336.in22k_ft_in22k_in1k |
89.214 |
98.854 |
304.53 |
336 |
eva_giant_patch14_224.clip_ft_in1k |
88.882 |
98.678 |
1012.56 |
224 |
eva02_base_patch14_448.mim_in22k_ft_in22k_in1k |
88.692 |
98.722 |
87.12 |
448 |
eva_large_patch14_336.in22k_ft_in1k |
88.652 |
98.722 |
304.53 |
336 |
eva_large_patch14_196.in22k_ft_in22k_in1k |
88.592 |
98.656 |
304.14 |
196 |
eva02_base_patch14_448.mim_in22k_ft_in1k |
88.23 |
98.564 |
87.12 |
448 |
eva_large_patch14_196.in22k_ft_in1k |
87.934 |
98.504 |
304.14 |
196 |
eva02_small_patch14_336.mim_in22k_ft_in1k |
85.74 |
97.614 |
22.13 |
336 |
eva02_tiny_patch14_336.mim_in22k_ft_in1k |
80.658 |
95.524 |
5.76 |
336 |
đ License
This model is released under the MIT license.
@article{EVA02,
title={EVA-02: A Visual Representation for Neon Genesis},
author={Fang, Yuxin and Sun, Quan and Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2303.11331},
year={2023}
}
@article{EVA-CLIP,
title={EVA-02: A Visual Representation for Neon Genesis},
author={Sun, Quan and Fang, Yuxin and Wu, Ledell and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2303.15389},
year={2023}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}