🚀 img2pose
img2pose uses Faster R-CNN to predict 6 Degree of Freedom Pose (DoF) for all faces in the photo, and can project the 3D face onto a 2D plane to identify bounding boxes for each face without the need for other face detection models.
🚀 Quick Start
The following is a step-by-step guide to quickly start using the img2pose model:
- Load model configurations.
- Initialize the img2pose model.
- Test the model with a face image.
- Postprocess the model output.
✨ Features
- Pose Prediction: Predict 6 Degree of Freedom Pose (DoF) for all faces in the photo.
- Bounding Box Identification: Project the 3D face onto a 2D plane to identify bounding boxes for each face.
- Self-sufficient: Does not require any other face detection model.
📦 Installation
No specific installation steps are provided in the original document.
💻 Usage Examples
Basic Usage
import numpy as np
import os
import json
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from feat.facepose_detectors.img2pose.deps.models import FasterDoFRCNN, postprocess_img2pose
from feat.utils.io import get_resource_path
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
facepose_config_file = hf_hub_download(repo_id= "py-feat/img2pose", filename="config.json", cache_dir=get_resource_path())
with open(facepose_config_file, "r") as f:
facepose_config = json.load(f)
device = 'cpu'
backbone = resnet_fpn_backbone(backbone_name="resnet18", weights=None)
backbone.eval()
backbone.to(device)
facepose_detector = FasterDoFRCNN(backbone=backbone,
num_classes=2,
min_size=facepose_config['min_size'],
max_size=facepose_config['max_size'],
pose_mean=torch.tensor(facepose_config['pose_mean']),
pose_stddev=torch.tensor(facepose_config['pose_stddev']),
threed_68_points=torch.tensor(facepose_config['threed_points']),
rpn_pre_nms_top_n_test=facepose_config['rpn_pre_nms_top_n_test'],
rpn_post_nms_top_n_test=facepose_config['rpn_post_nms_top_n_test'],
bbox_x_factor=facepose_config['bbox_x_factor'],
bbox_y_factor=facepose_config['bbox_y_factor'],
expand_forehead=facepose_config['expand_forehead'])
facepose_model_file = hf_hub_download(repo_id= "py-feat/img2pose", filename="model.safetensors", cache_dir=get_resource_path())
facepose_checkpoint = load_file(facepose_model_file)
facepose_detector.load_state_dict(facepose_checkpoint)
facepose_detector.eval()
facepose_detector.to(device)
face_image = "path/to/your/test_image.jpg"
img2pose_output = facepose_detector(face_image)
img2pose_output = postprocess_img2pose(img2pose_output[0])
bbox = img2pose_output['boxes']
poses = img2pose_output['dofs']
facescores = img2pose_output['scores']
📚 Documentation
Model Details
Property |
Details |
Model Type |
Convolutional Neural Network (CNN) |
Architecture |
Faster R-CNN |
Framework |
PyTorch |
Model Sources
Citation
If you use this model in your research or application, please cite the following paper:
Vítor Albiero, Xingyu Chen, Xi Yin, Guan Pang, Tal Hassner, "img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation," CVPR, 2021, arXiv:2012.07791
@inproceedings{albiero2021img2pose,
title={img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation},
author={Albiero, Vítor and Chen, Xingyu and Yin, Xi and Pang, Guan and Hassner, Tal},
booktitle={CVPR},
year={2021},
url={https://arxiv.org/abs/2012.07791},
}
Acknowledgements
We thank Albiero Vítor for sharing their code and training weights with a permissive license.
📄 License
This model is licensed under the CC BY-NC 4.0 license.