🚀 DeBERTa: Decoding-enhanced BERT with Disentangled Attention
DeBERTa improves upon the BERT and RoBERTa models by leveraging disentangled attention and an enhanced mask decoder. With 80GB of training data, it outperforms BERT and RoBERTa in most NLU tasks.
This is the DeBERTa large model fine - tuned for the MNLI task. For more details and updates, please visit the official repository.
✨ Features
- Advanced Architecture: Utilizes disentangled attention and an enhanced mask decoder to enhance performance.
- Superior Performance: Outperforms BERT, RoBERTa, and XLNet on a majority of NLU tasks.
📚 Documentation
Fine - tuning on NLU tasks
We present the development results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
Model |
SQuAD 1.1 |
SQuAD 2.0 |
MNLI - m/mm |
SST - 2 |
QNLI |
CoLA |
RTE |
MRPC |
QQP |
STS - B |
|
F1/EM |
F1/EM |
Acc |
Acc |
Acc |
MCC |
Acc |
Acc/F1 |
Acc/F1 |
P/S |
BERT - Large |
90.9/84.1 |
81.8/79.0 |
86.6/- |
93.2 |
92.3 |
60.6 |
70.4 |
88.0/- |
91.3/- |
90.0/- |
RoBERTa - Large |
94.6/88.9 |
89.4/86.5 |
90.2/- |
96.4 |
93.9 |
68.0 |
86.6 |
90.9/- |
92.2/- |
92.4/- |
XLNet - Large |
95.1/89.7 |
90.6/87.9 |
90.8/- |
97.0 |
94.9 |
69.0 |
85.9 |
90.8/- |
92.3/- |
92.5/- |
[DeBERTa - Large](https://huggingface.co/microsoft/deberta - large)1 |
95.5/90.1 |
90.7/88.0 |
91.3/91.1 |
96.5 |
95.3 |
69.5 |
91.0 |
92.6/94.6 |
92.3/- |
92.8/92.5 |
[DeBERTa - XLarge](https://huggingface.co/microsoft/deberta - xlarge)1 |
-/- |
-/- |
91.5/91.2 |
97.0 |
- |
- |
93.1 |
92.1/94.3 |
- |
92.9/92.7 |
[DeBERTa - V2 - XLarge](https://huggingface.co/microsoft/deberta - v2 - xlarge)1 |
95.8/90.8 |
91.4/88.9 |
91.7/91.6 |
97.5 |
95.8 |
71.1 |
93.9 |
92.0/94.2 |
92.3/89.8 |
92.9/92.9 |
[DeBERTa - V2 - XXLarge](https://huggingface.co/microsoft/deberta - v2 - xxlarge)1,2 |
96.1/91.4 |
92.2/89.7 |
91.7/91.9 |
97.2 |
96.0 |
72.0 |
93.5 |
93.1/94.9 |
92.7/90.3 |
93.2/93.1 |
Notes
- 1 Following RoBERTa, for RTE, MRPC, STS - B, we fine - tune the tasks based on [DeBERTa - Large - MNLI](https://huggingface.co/microsoft/deberta - large - mnli), [DeBERTa - XLarge - MNLI](https://huggingface.co/microsoft/deberta - xlarge - mnli), [DeBERTa - V2 - XLarge - MNLI](https://huggingface.co/microsoft/deberta - v2 - xlarge - mnli), [DeBERTa - V2 - XXLarge - MNLI](https://huggingface.co/microsoft/deberta - v2 - xxlarge - mnli). The results of SST - 2/QQP/QNLI/SQuADv2 will also be slightly improved when starting from MNLI fine - tuned models. However, we only report the numbers fine - tuned from pretrained base models for those 4 tasks.
- 2 To try the XXLarge model with HF transformers, you need to specify --sharded_ddp
cd transformers/examples/text - classification/
export TASK_NAME=mrpc
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta - v2 - xxlarge \
--task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \
--learning_rate 3e - 6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
Citation
If you find DeBERTa useful for your work, please cite the following paper:
@inproceedings{
he2021deberta,
title={DEBERTA: DECODING - ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
📄 License
This project is licensed under the MIT license.