Model Overview
Model Features
Model Capabilities
Use Cases
๐ Japanese-Novel-Reward-modernbert-ja-130m
This model is a Reward model for evaluating the quality of Japanese novels, created by fine-tuning sbintuitions/modernbert-ja-130m. It is mainly intended for applications such as reinforcement learning of novel generation models. By predicting users' evaluations of input novel texts through regression, it is assumed that the quality of the text can be indirectly evaluated. However, please note that the results may be affected by various biases other than text quality, such as genre and writing style.
๐ Quick Start
Before using this model, please install transformers
, flash attention 2
, etc. in advance.
๐ป Usage Examples
Basic Usage
from transformers import pipeline
import torch
model_name = "Aratako/Japanese-Novel-Reward-modernbert-ja-130m"
classifier = pipeline("text-classification", model=model_name, tokenizer=model_name, max_length=8192, truncation=True, device_map="auto", torch_dtype=torch.float32)
# The following example sentences are generated by o1-pro.
text1 = """ใๅฐ็ใใๅๅ
ๅนดๅ
ใซใใๆๆใทใซใดใกใฏใๅธธใซ็ท่ฒใฎใชใผใญใฉใๅคงๆฐใ่ฆใๅฐฝใใใฆใใใๅคงๆฐ็ตๆใฏใใใใซไบบ้กใๅผๅธใงใใๆฐดๆบใซ้ใใฆใใใๅฝ้ๆๆๆขๆปใใผใ ใฏ็้ธๅพใใใซๅฐ่ฆๆจกใช่ชฟๆปๅบๅฐใ่จญๅถใใใใพใ ๆช็ฅใฎ็็ฉใ็ฐๅขใชในใฏใๅคใใๅธธๆ้ฒ่ญทๆใ็็จใใใใจใ็พฉๅไปใใใใฆใใใใใใใซใฏไปใฎๆๆใซใฏใชใ็ฅ็ง็ใช่ผใใใใฃใใ
ใใใใใใทใซใดใกใซๅฐ็ใใฆไธ้ฑ้ใ็ต้ใใใใๆฅใใใผใ ใฏๅจๆณขๆฐๅธฏใฎ็ฐใชใๅฅๅฆใชใทใฐใใซใๅไฟกใใใใใใฏๆๆใฎๅฅฅๅฐใใ็บใใใใฆใใใใใใๆญ็ถ็ใซ่งฃๆไธๅฏ่ฝใช็ฌฆๅทใ็นฐใ่ฟใใฆใใใๅงใใฏๆพ้ป็พ่ฑกใๅฐ็ฃๆฐใฎไนฑใใจ่ใใใใใใ่งฃๆใ็ถใใใใกใซใใฎใใฟใผใณใซใฏ้ซๅบฆใช่ฆๅๆงใใใใจๅคๆใใใใทใซใดใกใซๅ็็็ฉใใใใใฏไธๆใ ใฃใใใไปฎใซ็ฅ็็ๅฝไฝใๅญๅจใใใจใใใฐใใใฎใทใฐใใซใใใๆๅใฎๆฅ่งฆใฎ่จผๆ ใใใใใชใใ
ใๆช็ฅใฎใทใฐใใซใๆข็ดขใใใใใ่ชฟๆปใใผใ ใฎๅๆฐใฏๅบๅฐใซๆฎใใไปใฎๅๆฐใๅฐไธ่ปไธกใง็บไฟกๆบใ็ฎๆใใใจใซใชใฃใใใใฉใ็ใใฎใฏๅฎนๆใงใฏใชใใๆๆใฎ่ช่ปขใจ่ป้ใฏไธๅฎๅฎใงใใชใผใญใฉใฎ็บ็ๆบใงใใๆฅตๅฐๅธฏใ้ใใชใใใฐใชใใชใใใใ ใใใใฏๅผท็ใช้ปๅญๅตใๅนใ่ใใ้ไฟกใ้ๅใใใชในใฏใๅคงใใใ
ใๅบ็บใใฆใใไธๆฅ็ฎใฎๅคใ่ปไธกใฎ้ไฟก่ฃ
็ฝฎใซๅใณใใฎ็ฌฆๅทใๆตใ่พผใใงใใใใใใใใใใพใงใใใ้ฎฎๆใงใใใคไฟกๅทใฎๅผทๅบฆใไธๅฎใใฆใใใไบบ้กๅดใฎ็งปๅใซๅใใใฆใทใฐใใซใๅผทใพใฃใฆใใใใใซใใๆใใใใใใพใใงโไฝ่
ใโใใใกใใๆขใใๅฐใใใจใใฆใใใใฎใใใ ใฃใใ
ใไบๆฅ็ฎใฎๅคๅปใ่ปไธกใฏ็ฎ็ๅฐใจๆใใใๅฐ็นใซๅฐ็ใใใใใใซใฏๅทจๅคงใช็ตๆถๆฑใไฝๆฌใๅฐ้ขใใ็ชใๅบใใ็ท่ฒใฎใชใผใญใฉใๅๅฐใใฆใใใใใฆใใใใใใฆๅผท็ใชๆพ้ปๅ
ใ่ตฐใใ่ปไธกใฎใขใใฟใผใซ็กๆฐใฎๆๅญๅใๆตใๅบใใใใใฎไธใคใฒใจใคใใใใใพใงๅไฟกใใฆใใ็ฌฆๅทใฎๆญ็ใจไธ่ดใใใใจใๅคๆใใใ
ใ่งฃ่ชญใงใใชใใ๏ผใ
ใใใผใ ใฎใจใณใธใใขใใใใซ็ซฏๆซใซๅ
ฅๅใ้ๅงใใใใใใจใ้ซๅบฆใชๆฐ็ใขใซใดใชใบใ ใ็ตใฆใ็ญใๆ็ซ ใๆตฎใใณไธใใฃใใ
โโใใใใใๆใ
ใฏใใชใใใกใๅพ
ใฃใฆใใใโโ
ใไธๅใฏๆฏใใฎใใ ใใใฎๆๆใซ็ฅ็็ๅฝไฝใๅญๅจใใๅฏ่ฝๆงใ้ซใใจ็ขบไฟกใใ็ฌ้ใ ใฃใใๆใๆใ็ตๆถๆฑใธ่ฟใฅใใจใ่กจ้ขใซ่ใๅ
ใ่ใฎใใใชใใฎใ่ตฐใฃใฆใใใฎใ่ฆใใใ่ชฐใใๅใใฆ่ฆใๆช็ฅใฎใใฏใใญใธใผใซๆธๆใใจ่ๅฅฎใ้ ใใชใใ
ใใใใฏใใกใใปใผใธใฎๆๅฝฑ่ฃ
็ฝฎใใใใใชใใๅฐ็ใงใใใใญใฐใฉใ ใฎใใใชโฆโฆใ
ใๅ
ใปใฉใฎไธๆใซ็ถใใใใใซ่ค้ใช็ฌฆๅทใ่ตฐใใ่งฃ่ชญใฝใใใๅใณๅใใๆฌกใ
ใจๆตฎใใณไธใใ่จ่ใซใไบบ้กใฏๅใใฆโๅฝผใโใฎๅฃฐใ่ใใใ
โโใใฎๆใฏใใใใ้ณใใๅ
ใจใใฆ่จ้ฒใใใ็งใใกใฏใใชใๆนใๆญ่ฟใใๆบๅใใงใใฆใใใโโ
ใใใฎ็ฌ้ใ็ตๆถๆฑใฎๅจๅฒใซใใฃใ็กๆฐใฎใชใผใญใฉใๆธฆใๅทปใๅงใใ่ชฟๆปใใผใ ใฏ้ฎฎใใใชๅ
ใฎๅตใซๅ
ใพใใใใชใผใใผใฎ่ธใซใฏใ็ๆใจๅๆใซๅฅๅฆใชๅฎๅฟๆใๅบใใฃใฆใใใใใใฆ้ไฟกใๅบๅฐใธๅพฉๆงใใใใจใ็ตๆถๆฑใฎๅ
้จใซๅบใใๆช็ฅใฎไธ็ใใในใฆ่จ้ฒใในใใๅ
จไบบ้กใๆฐใใชไธๆญฉใ่ธใฟๅบใๆบๅใๅงใใใฎใ ใฃใใ"""
text2 = """ใใผใใฏๅฎๅฎ่นใซไนใฃใฆใใใ็็ฑใฏใใใใใใชใใใจใซใใใใใใฏ็ญใ้จๅฑใใฒใจใคใใใ ใใงใ็ชใฏ้ปใใฆไฝใ่ฆใใชใใๅฎๅฎใๆ
ใใฆใใใฏใใ ใใใฉใๆฏ่ฒใฏ็ใฃๆใ ใ้ฃๆใใซใใปใซใฟใใใชๅบใใใฎใฐใใใ ใใใใพใใใใใใชใใ
ใๆฅๅธธใฎใปใจใใฉใฏ้ๅฑใ ใใใๅฏใฆใฐใใใใใใจใใฉใ็ฎใ่ฆใพใใฆใณใณใใญใผใซใใใซใ่ฆใใใฉใ่ตคใ้ใฎใฉใณใใๆๅณใใชใ็นๆป
ใใฆใใใ ใใงใไฝใใฉใใชใฃใฆใใใฎใใใใใใใชใใ
ใ่นๅ
ใฎใณใณใใฅใผใฟใจไผ่ฉฑใใใใจใใฆใใ่ฟไบใฏใ็ฐๅธธใใทใ่ช่กไธญใในใใจใใ่จใใชใใไฝใ็ฐๅธธใใใฃใใใฉใใชใใใๆณๅใใใฎใ้ขๅใ ใใใใใฎใพใพใพใๅฏใใใใพใซ้ๅใฎ่ชฟๆดใใใพใใใใใๅฐใใตใใฃใจใใใใฉใใใใซๅ
ใซๆปใใใใใ ใใ ใ
ใใผใใฏๅฎๅฎ่นใงไฝใใใฆใใใฎใใๆฌๅฝใซใใใใใใชใใใใถใๅฐ็ใซๅธฐใใใจใ็ฎๆใใฆใใใใ ใใใใฉใๅธฐใฃใฆใ็นๅฅใใใใจใฏใชใใใๆฅใ็็ฑใๆใใคใใชใใใใใใใฐใใใคๅบ็บใใใฎใใ่ฆใใฆใใชใใ
ใใจใใฉใ้ไฟกใๅ
ฅใใใจใใใใใใฉใๅคงๆตใฏ้้ณใ ใใ ใไฝใ่จใฃใฆใใใใใใใใชใใใ่ใ่ฟใๆฐๅใใชใใ้ณๅฃฐใญใฐใๅ็ใใฆใใใถใถโฆใใจใใใใคใบใ็ถใใ ใใงใๆๅพใซๅฐใใชๅฃฐใ่ใใใใใใชๆฐใใใใใฉใ็ตๅฑๆๅณใๅใใใชใใใๆฐใซใใชใใ
ใใใใชใใใงใไปๆฅใฏใพใๅบใใซใใปใซ้ฃใใใใฃใใใจใใผใใฏใใใใซๅใ่พผใใใใซใใฆ็ ใใซใคใใใๆๆฅใใพใๅใไธๆฅใ็ถใใจๆใใใใฉใ็นใซๅ้กใฏใชใใใฉใใ้ใใ่ฆใใชใๅฎๅฎใฎไธญใงใใผใใฏใใ ไธไบบใ ใใใ ใ
ใๅฎๅฎใฃใฆใใใใชใซใคใพใใชใใใฎใ ใฃใใใ ใชใจๆใใชใใใใผใใฏ่นๅ
ใฎใฉใณใใ็นๆป
ใใใฎใใผใใใ็บใใใใใใงใ่นใฏใฉใใใธๅใใฃใฆๅใใฆใใใใใใ็ฎๆจใใใใฎใใฉใใใฏใใใใใใชใใ"""
print(classifier([text1, text2]))
Output:
[{'label': 'LABEL_0', 'score': 8.372932434082031}, {'label': 'LABEL_0', 'score': 6.732645034790039}]
Due to the training data, the output is expected to be in the range of 0 to 10, but there is also a possibility of outliers beyond this range.
๐ง Technical Details
Training Hyperparameters
The main hyperparameters for training are as follows:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: adamw_torch
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- max_length: 8192
Training Results
The data is divided into train/valid/test sets, and the model at the step with the minimum valid loss is selected.
- Evaluation metrics for the valid data:
- Loss: 1.3087
- Mae: 0.8516
- R2: 0.3592
- Pearsonr: 0.6119
- Spearmanr: 0.6000
- Evaluation metrics for the test data:
- Loss: 1.2451
- Mae: 0.8403
- R2: 0.3130
- Pearsonr: 0.5931
- Spearmanr: 0.5922
- Distribution of inference results for the test data:
- Scatter plot:
- Error distribution:
๐ License
This model is released under the MIT License.
Framework versions
- Transformers 4.49.0
- Pytorch 2.4.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0

