đ First Name Classification Model
A Transformer-based classifier to determine if a given first name is likely real or fake, useful for validating form submissions and preventing bot entries.
đ Quick Start
A Transformer-based classifier that checks if a provided first name is likely to be real (LABEL_1) or fake (LABEL_0). This can be helpful in validating contact form submissions, preventing bot entries, or for general name classification tasks.
⨠Features
- Checks if a provided first name is likely to be real or fake.
- Useful for validating contact form submissions and preventing bot entries.
- Can be used for general name classification tasks.
đĻ Installation
- Clone the Repository:
git clone https://github.com/Vishodi/First-Name-Classification.git
- Set Up the Environment:
Install the required packages using pip:
pip install -r requirements.txt
đģ Usage Examples
Basic Usage
from transformers import pipeline
model_dir = "vishodi/First-Name-Classification"
classifier = pipeline(
"text-classification",
model=model_dir,
tokenizer=model_dir,
)
test_names = ["Mark", "vcbcvb", "uhyhu", "elon"]
for name in test_names:
result = classifier(name)
label = result[0]['label']
score = result[0]['score']
print(f"Name: {name} => Prediction: {label}, Score: {score:.4f}")
Output:
Name: Mark => Prediction: LABEL_1, Score: 0.9994
Name: vcbcvb => Prediction: LABEL_0, Score: 0.9985
Name: uhyhu => Prediction: LABEL_0, Score: 0.9982
Name: elon => Prediction: LABEL_1, Score: 0.9987
đ Documentation
Project Structure
First_Name_Prediction/
âââ .gitattributes
âââ README.md
âââ config.json
âââ model.safetensors
âââ requirements.txt
âââ special_tokens_map.json
âââ tokenizer.json
âââ tokenizer_config.json
âââ vocab.txt
đ License
This project is licensed under the MIT License.
Support Us

Property |
Details |
Model Type |
Transformer-based classifier |
Base Model |
distilbert/distilbert-base-uncased |
Pipeline Tag |
text-classification |
Metrics |
accuracy 97% |
License |
MIT |