๐ Chinese-CLIP-ViT-Large-Patch14
This is a large-scale Chinese image-text matching model, which can effectively calculate the similarity between images and text.
๐ Quick Start
This is the large-version of the Chinese CLIP, with ViT-L/14 as the image encoder and RoBERTa-wwm-base as the text encoder. Chinese CLIP is a simple implementation of CLIP on a large-scale dataset of around 200 million Chinese image-text pairs. For more details, please refer to our technical report https://arxiv.org/abs/2211.01335 and our official github repo https://github.com/OFA-Sys/Chinese-CLIP (Welcome to star! ๐ฅ๐ฅ)
๐ป Usage Examples
Basic Usage
from PIL import Image
import requests
from transformers import ChineseCLIPProcessor, ChineseCLIPModel
model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-large-patch14")
processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-large-patch14")
url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
texts = ["ๆฐๅฐผ้พ", "ๅฆ่็งๅญ", "ๅฐ็ซ้พ", "็ฎๅกไธ"]
inputs = processor(images=image, return_tensors="pt")
image_features = model.get_image_features(**inputs)
image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
inputs = processor(text=texts, padding=True, return_tensors="pt")
text_features = model.get_text_features(**inputs)
text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
However, if you are not satisfied with only using the API, feel free to check our github repo https://github.com/OFA-Sys/Chinese-CLIP for more details about training and inference.
๐ Documentation
Results
MUGE Text-to-Image Retrieval
Setup |
Zero-shot - R@1 |
Zero-shot - R@5 |
Zero-shot - R@10 |
Zero-shot - MR |
Finetune - R@1 |
Finetune - R@5 |
Finetune - R@10 |
Finetune - MR |
Wukong |
42.7 |
69.0 |
78.0 |
63.2 |
52.7 |
77.9 |
85.6 |
72.1 |
R2D2 |
49.5 |
75.7 |
83.2 |
69.5 |
60.1 |
82.9 |
89.4 |
77.5 |
CN-CLIP |
63.0 |
84.1 |
89.2 |
78.8 |
68.9 |
88.7 |
93.1 |
83.6 |
Flickr30K-CN Retrieval
Task |
Text-to-Image - Zero-shot - R@1 |
Text-to-Image - Zero-shot - R@5 |
Text-to-Image - Zero-shot - R@10 |
Text-to-Image - Finetune - R@1 |
Text-to-Image - Finetune - R@5 |
Text-to-Image - Finetune - R@10 |
Image-to-Text - Zero-shot - R@1 |
Image-to-Text - Zero-shot - R@5 |
Image-to-Text - Zero-shot - R@10 |
Image-to-Text - Finetune - R@1 |
Image-to-Text - Finetune - R@5 |
Image-to-Text - Finetune - R@10 |
Wukong |
51.7 |
78.9 |
86.3 |
77.4 |
94.5 |
97.0 |
76.1 |
94.8 |
97.5 |
92.7 |
99.1 |
99.6 |
R2D2 |
60.9 |
86.8 |
92.7 |
84.4 |
96.7 |
98.4 |
77.6 |
96.7 |
98.9 |
95.6 |
99.8 |
100.0 |
CN-CLIP |
71.2 |
91.4 |
95.5 |
83.8 |
96.9 |
98.6 |
81.6 |
97.5 |
98.8 |
95.3 |
99.7 |
100.0 |
COCO-CN Retrieval
Task |
Text-to-Image - Zero-shot - R@1 |
Text-to-Image - Zero-shot - R@5 |
Text-to-Image - Zero-shot - R@10 |
Text-to-Image - Finetune - R@1 |
Text-to-Image - Finetune - R@5 |
Text-to-Image - Finetune - R@10 |
Image-to-Text - Zero-shot - R@1 |
Image-to-Text - Zero-shot - R@5 |
Image-to-Text - Zero-shot - R@10 |
Image-to-Text - Finetune - R@1 |
Image-to-Text - Finetune - R@5 |
Image-to-Text - Finetune - R@10 |
Wukong |
53.4 |
80.2 |
90.1 |
74.0 |
94.4 |
98.1 |
55.2 |
81.0 |
90.6 |
73.3 |
94.0 |
98.0 |
R2D2 |
56.4 |
85.0 |
93.1 |
79.1 |
96.5 |
98.9 |
63.3 |
89.3 |
95.7 |
79.3 |
97.1 |
98.7 |
CN-CLIP |
69.2 |
89.9 |
96.1 |
81.5 |
96.9 |
99.1 |
63.0 |
86.6 |
92.9 |
83.5 |
97.3 |
99.2 |
Zero-shot Image Classification
Task |
CIFAR10 |
CIFAR100 |
DTD |
EuroSAT |
FER |
FGVC |
KITTI |
MNIST |
PC |
VOC |
GIT |
88.5 |
61.1 |
42.9 |
43.4 |
41.4 |
6.7 |
22.1 |
68.9 |
50.0 |
80.2 |
ALIGN |
94.9 |
76.8 |
66.1 |
52.1 |
50.8 |
25.0 |
41.2 |
74.0 |
55.2 |
83.0 |
CLIP |
94.9 |
77.0 |
56.0 |
63.0 |
48.3 |
33.3 |
11.5 |
79.0 |
62.3 |
84.0 |
Wukong |
95.4 |
77.1 |
40.9 |
50.3 |
- |
- |
- |
- |
- |
- |
CN-CLIP |
96.0 |
79.7 |
51.2 |
52.0 |
55.1 |
26.2 |
49.9 |
79.4 |
63.5 |
84.9 |
๐ License
If you find Chinese CLIP helpful, feel free to cite our paper. Thanks for your support!
@article{chinese-clip,
title={Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese},
author={Yang, An and Pan, Junshu and Lin, Junyang and Men, Rui and Zhang, Yichang and Zhou, Jingren and Zhou, Chang},
journal={arXiv preprint arXiv:2211.01335},
year={2022}
}