đ Marqo-FashionCLIP Model Card
Marqo-FashionCLIP and Marqo-FashionSigLIP outperform previous state - of - the - art fashion CLIP models. Marqo-FashionCLIP uses Generalised Contrastive Learning (GCL) to train on various fashion - related information, providing highly relevant search results for fashion products. It is fine - tuned from ViT - B - 16 (laion2b_s34b_b88k).
Github Page: Marqo-FashionCLIP
Blog: Marqo Blog

đ Quick Start
⨠Features
- Tags: clip, e - commerce, fashion, multimodal retrieval, transformers.js, transformers
- Library Name: open_clip
- Pipeline Tag: zero - shot - image - classification
- License: apache - 2.0
- Language: en
- Metrics: precision, recall, MRR
Property |
Details |
Model Type |
Marqo-FashionCLIP |
Training Data |
Not specified |
đģ Usage Examples
Basic Usage
Hugging Face
The model can be loaded with AutoModel by
from transformers import AutoModel, AutoProcessor
model = AutoModel.from_pretrained('Marqo/marqo-fashionCLIP', trust_remote_code=True)
processor = AutoProcessor.from_pretrained('Marqo/marqo-fashionCLIP', trust_remote_code=True)
import torch
from PIL import Image
image = [Image.open("docs/fashion-hippo.png")]
text = ["a hat", "a t-shirt", "shoes"]
processed = processor(text=text, images=image, padding='max_length', return_tensors="pt")
with torch.no_grad():
image_features = model.get_image_features(processed['pixel_values'], normalize=True)
text_features = model.get_text_features(processed['input_ids'], normalize=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
Advanced Usage
OpenCLIP
The model can be seamlessly used with OpenCLIP by
import open_clip
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionCLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP')
import torch
from PIL import Image
image = preprocess_val(Image.open("docs/fashion-hippo.png")).unsqueeze(0)
text = tokenizer(["a hat", "a t-shirt", "shoes"])
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image, normalize=True)
text_features = model.encode_text(text, normalize=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
Transformers.js
You can also run the model in JavaScript with the Transformers.js library.
First, install it from NPM using:
npm i @huggingface/transformers
Then, compute embeddings as follows:
import { CLIPTextModelWithProjection, CLIPVisionModelWithProjection, AutoTokenizer, AutoProcessor, RawImage, softmax, dot } from '@huggingface/transformers';
const model_id = 'Marqo/marqo-fashionCLIP';
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
const text_model = await CLIPTextModelWithProjection.from_pretrained(model_id);
const processor = await AutoProcessor.from_pretrained(model_id);
const vision_model = await CLIPVisionModelWithProjection.from_pretrained(model_id);
const texts = ['a hat', 'a t-shirt', 'shoes'];
const text_inputs = tokenizer(texts, { padding: 'max_length', truncation: true });
const { text_embeds } = await text_model(text_inputs);
const image = await RawImage.read('https://raw.githubusercontent.com/marqo-ai/marqo-FashionCLIP/main/docs/fashion-hippo.png');
const image_inputs = await processor(image);
const { image_embeds } = await vision_model(image_inputs);
const normalized_text_embeds = text_embeds.normalize().tolist();
const normalized_image_embeds = image_embeds.normalize().tolist()[0];
const text_probs = softmax(normalized_text_embeds.map((text_embed) =>
100.0 * dot(normalized_image_embeds, text_embed)
));
console.log(text_probs);
đ Documentation
Benchmark Results
Average evaluation results on 6 public multimodal fashion datasets (Atlas, DeepFashion (In - shop), DeepFashion (Multimodal), Fashion200k, KAGL, and Polyvore) are reported below:
Text - To - Image (Averaged across 6 datasets)
Model |
AvgRecall |
Recall@1 |
Recall@10 |
MRR |
Marqo - FashionCLIP |
0.192 |
0.094 |
0.290 |
0.200 |
FashionCLIP2.0 |
0.163 |
0.077 |
0.249 |
0.165 |
OpenFashionCLIP |
0.132 |
0.060 |
0.204 |
0.135 |
ViT - B - 16 - laion2b_s34b_b88k |
0.174 |
0.088 |
0.261 |
0.180 |
Category - To - Product (Averaged across 5 datasets)
Model |
AvgP |
P@1 |
P@10 |
MRR |
Marqo - FashionCLIP |
0.705 |
0.734 |
0.676 |
0.776 |
FashionCLIP2.0 |
0.684 |
0.681 |
0.686 |
0.741 |
OpenFashionCLIP |
0.646 |
0.653 |
0.639 |
0.720 |
ViT - B - 16 - laion2b_s34b_b88k |
0.662 |
0.673 |
0.652 |
0.743 |
Sub - Category - To - Product (Averaged across 4 datasets)
Model |
AvgP |
P@1 |
P@10 |
MRR |
Marqo - FashionCLIP |
0.707 |
0.747 |
0.667 |
0.772 |
FashionCLIP2.0 |
0.657 |
0.676 |
0.638 |
0.733 |
OpenFashionCLIP |
0.598 |
0.619 |
0.578 |
0.689 |
ViT - B - 16 - laion2b_s34b_b88k |
0.638 |
0.651 |
0.624 |
0.712 |
đ License
This project is licensed under the apache - 2.0 license.