đ ViT-SO400M-14-SigLIP2-378 Model Card
This model is a SigLIP 2 Vision-Language model trained on WebLI. It has been converted from the original JAX checkpoints in Big Vision for use in OpenCLIP.
đ Quick Start
The following steps and code example will help you quickly start using this model for zero-shot image classification.
⨠Features
- Model Type: Contrastive Image-Text, Zero-Shot Image Classification.
- Original Source: https://github.com/google-research/big_vision
- Dataset: WebLI
- Papers:
Property |
Details |
Model Type |
Contrastive Image-Text, Zero-Shot Image Classification |
Original |
https://github.com/google-research/big_vision |
Training Data |
WebLI |
đĻ Installation
Ensure you have the required libraries installed:
pip install open-clip-torch>=2.31.0 timm>=1.0.15
đģ Usage Examples
Basic Usage
import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer
model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-SO400M-14-SigLIP2-378')
tokenizer = get_tokenizer('hf-hub:timm/ViT-SO400M-14-SigLIP2-378')
image = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)
labels_list = ["a dog", "a cat", "a donut", "a beignet"]
text = tokenizer(labels_list, context_length=model.context_length)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image, normalize=True)
text_features = model.encode_text(text, normalize=True)
text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
zipped_list = list(zip(labels_list, [100 * round(p.item(), 3) for p in text_probs[0]]))
print("Label probabilities: ", zipped_list)
đ Documentation
This model is a SigLIP 2 Vision-Language model trained on the WebLI dataset. It can be used for zero-shot image classification tasks. The model has been converted from the original JAX checkpoints in Big Vision for use in OpenCLIP.
đ License
This model is licensed under the Apache 2.0 License.
đ Citation
@article{tschannen2025siglip,
title={SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features},
author={Tschannen, Michael and Gritsenko, Alexey and Wang, Xiao and Naeem, Muhammad Ferjad and Alabdulmohsin, Ibrahim and Parthasarathy, Nikhil and Evans, Talfan and Beyer, Lucas and Xia, Ye and Mustafa, Basil and H'enaff, Olivier and Harmsen, Jeremiah and Steiner, Andreas and Zhai, Xiaohua},
year={2025},
journal={arXiv preprint arXiv:2502.14786}
}
@article{zhai2023sigmoid,
title={Sigmoid loss for language image pre-training},
author={Zhai, Xiaohua and Mustafa, Basil and Kolesnikov, Alexander and Beyer, Lucas},
journal={arXiv preprint arXiv:2303.15343},
year={2023}
}
@misc{big_vision,
author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
title = {Big Vision},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/google-research/big_vision}}
}