đ ltxvideo-disney
This project is a LyCORIS adapter derived from Lightricks/LTX-Video. It is designed to generate black - and - white Disney - style video scenes, offering a unique visual experience for text - to - video tasks.
đ Quick Start
This is a LyCORIS adapter derived from Lightricks/LTX-Video.
The main validation prompt used during training was:
A black and white disney scene in the style of Steamboat Willie
⨠Features
- Disney - Style Generation: Capable of generating black - and - white Disney - style video scenes in the style of Steamboat Willie.
- Customizable Inference: Allows users to adjust various parameters during inference, such as CFG, steps, sampler, etc.
đĻ Installation
No specific installation steps are provided in the original README.
đģ Usage Examples
Basic Usage
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'Lightricks/LTX-Video'
adapter_repo_id = 'bghira/ltxvideo-disney'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "A black and white disney scene in the style of Steamboat Willie"
negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average'
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=768,
height=512,
guidance_scale=3.8,
).frames[0]
from diffusers.utils.export_utils import export_to_gif
export_to_gif(model_output, "output.gif", fps=25)
đ Documentation
Validation settings
Property |
Details |
CFG |
3.8 |
CFG Rescale |
0.0 |
Steps |
25 |
Sampler |
FlowMatchEulerDiscreteScheduler |
Seed |
42 |
Resolution |
768x512 |
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained.
You may reuse the base model text encoder for inference.
Training settings
Property |
Details |
Training epochs |
2666 |
Training steps |
8000 |
Learning rate |
5e - 05 - Learning rate schedule: cosine - Warmup steps: 400000 |
Max grad value |
0.0 |
Effective batch size |
24 - Micro - batch size: 8 - Gradient accumulation steps: 1 - Number of GPUs: 3 |
Gradient checkpointing |
True |
Prediction type |
flow - matching (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing']) |
Optimizer |
adamw_bf16 |
Trainable parameter precision |
Pure BF16 |
Base model precision |
int8 - quanto |
Caption dropout probability |
10.0% |
LyCORIS Config:
{
"bypass_mode": true,
"algo": "lokr",
"multiplier": 1.0,
"full_matrix": true,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 4,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"FeedForward": {
"factor": 4
},
"Attention": {
"factor": 2
}
}
}
}
Datasets
disney - black - and - white
Property |
Details |
Repeats |
0 |
Total number of images |
~69 |
Total number of aspect buckets |
1 |
Resolution |
0.2304 megapixels |
Cropped |
False |
Crop style |
None |
Crop aspect |
None |
Used for regularisation data |
No |
đ§ Technical Details
Exponential Moving Average (EMA)
SimpleTuner generates a safetensors variant of the EMA weights and a pt file.
The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning.
The EMA model may provide a more well - rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.
đ License
The license is other.