🚀 Qwen2.5-0.5B-Portuguese-v1
This is a fine-tuned version of Qwen2.5-0.5B, optimized for proficiency in the Portuguese language and enhanced intelligence. It can be used for various text generation tasks.
🚀 Quick Start
Model Access
You can access the model at the following link:
https://ollama.com/cnmoro/Qwen2.5-0.5B-Portuguese-v1
Code Example
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "cnmoro/Qwen2.5-0.5B-Portuguese-v1"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Escreva uma breve introdução sobre LLMs (Large Language Models) e suas aplicações."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
response
📚 Documentation
Overall Results
Task |
Metric |
Value |
Stdev |
assin2_rte |
f1_macro |
0.391 |
0.006 |
assin2_rte |
acc |
0.527 |
0.007 |
assin2_sts |
pearson |
0.115 |
0.014 |
assin2_sts |
mse |
1.011 |
N/A |
bluex |
acc |
0.349 |
0.010 |
enem_challenge |
acc |
0.363 |
0.007 |
faquad_nli |
f1_macro |
0.595 |
0.017 |
faquad_nli |
acc |
0.791 |
0.011 |
hatebr_offensive |
f1_macro |
0.338 |
0.005 |
hatebr_offensive |
acc |
0.502 |
0.009 |
oab_exams |
acc |
0.326 |
0.006 |
portuguese_hate_speech |
f1_macro |
0.412 |
0.004 |
portuguese_hate_speech |
acc |
0.702 |
0.011 |
tweetsentbr |
f1_macro |
0.455 |
0.005 |
tweetsentbr |
acc |
0.594 |
0.008 |
Detailed Results
assin2_rte
Metric |
Value |
Stdev |
f1_macro |
0.391 |
0.006 |
acc |
0.527 |
0.007 |
assin2_sts
Metric |
Value |
Stdev |
pearson |
0.115 |
0.014 |
mse |
1.011 |
N/A |
bluex
Exam ID |
Metric |
Value |
Stdev |
all |
acc |
0.349 |
0.010 |
USP_2019 |
acc |
0.225 |
0.038 |
USP_2024 |
acc |
0.293 |
0.041 |
USP_2021 |
acc |
0.423 |
0.040 |
UNICAMP_2018 |
acc |
0.241 |
0.034 |
UNICAMP_2024 |
acc |
0.444 |
0.043 |
USP_2020 |
acc |
0.393 |
0.038 |
UNICAMP_2020 |
acc |
0.291 |
0.035 |
UNICAMP_2021_1 |
acc |
0.326 |
0.040 |
UNICAMP_2022 |
acc |
0.487 |
0.046 |
USP_2022 |
acc |
0.388 |
0.040 |
UNICAMP_2019 |
acc |
0.280 |
0.037 |
UNICAMP_2021_2 |
acc |
0.294 |
0.037 |
UNICAMP_2023 |
acc |
0.558 |
0.044 |
USP_2023 |
acc |
0.364 |
0.042 |
USP_2018 |
acc |
0.278 |
0.035 |
enem_challenge
Exam ID |
Metric |
Value |
Stdev |
all |
acc |
0.363 |
0.007 |
2016_2 |
acc |
0.390 |
0.025 |
2015 |
acc |
0.319 |
0.025 |
2011 |
acc |
0.410 |
0.026 |
2013 |
acc |
0.398 |
0.027 |
2017 |
acc |
0.319 |
0.025 |
2022 |
acc |
0.376 |
0.024 |
2009 |
acc |
0.226 |
0.023 |
2010 |
acc |
0.444 |
0.026 |
2012 |
acc |
0.345 |
0.025 |
2014 |
acc |
0.339 |
0.026 |
2016 |
acc |
0.397 |
0.026 |
2023 |
acc |
0.385 |
0.024 |
faquad_nli
Metric |
Value |
Stdev |
f1_macro |
0.595 |
0.017 |
acc |
0.791 |
0.011 |
hatebr_offensive
Metric |
Value |
Stdev |
f1_macro |
0.338 |
0.005 |
acc |
0.502 |
0.009 |
oab_exams
Exam ID |
Metric |
Value |
Stdev |
all |
acc |
0.326 |
0.006 |
2018-25 |
acc |
0.400 |
0.032 |
2016-20a |
acc |
0.238 |
0.027 |
2011-05 |
acc |
0.400 |
0.032 |
2012-08 |
acc |
0.325 |
0.030 |
2012-09 |
acc |
0.260 |
0.029 |
2014-13 |
acc |
0.325 |
0.030 |
2011-03 |
acc |
0.313 |
0.027 |
2016-20 |
acc |
0.275 |
0.029 |
2012-06a |
acc |
0.325 |
0.030 |
2017-22 |
acc |
0.338 |
0.031 |
2015-16 |
acc |
0.325 |
0.030 |
2013-12 |
acc |
0.300 |
0.030 |
2017-24 |
acc |
0.250 |
0.028 |
2012-06 |
acc |
0.238 |
0.027 |
2014-14 |
acc |
0.325 |
0.030 |
2013-11 |
acc |
0.325 |
0.030 |
2013-10 |
acc |
0.413 |
0.032 |
2010-02 |
acc |
0.390 |
0.028 |
2016-21 |
acc |
0.375 |
0.031 |
2015-18 |
acc |
0.300 |
0.030 |
2015-17 |
acc |
0.282 |
0.029 |
2016-19 |
acc |
0.333 |
0.031 |
2012-07 |
acc |
0.388 |
0.031 |
2017-23 |
acc |
0.325 |
0.030 |
2011-04 |
acc |
0.350 |
0.031 |
2010-01 |
acc |
0.282 |
0.028 |
2014-15 |
acc |
0.385 |
0.032 |
portuguese_hate_speech
Metric |
Value |
Stdev |
f1_macro |
0.412 |
0.004 |
acc |
0.702 |
0.011 |
tweetsentbr
Metric |
Value |
Stdev |
f1_macro |
0.455 |
0.005 |
acc |
0.594 |
0.008 |
Model Meta Information
Property |
Details |
Truncated Samples |
3863 |
Non-Truncated Samples |
10287 |
Padded Samples |
0 |
Non-Padded Samples |
14150 |
Fewshots Truncated |
3863 |
Has Chat Template |
True |
Chat Type |
system_user_assistant |
Number of GPUs |
1 |
Accelerate Number of Processes |
N/A |
Model SHA |
None |
Model Data Type |
torch.bfloat16 |
Model Memory Footprint |
988065664 bytes |
Model Number of Parameters |
494032768 |
Model is Loaded in 4bit |
N/A |
Model is Loaded in 8bit |
N/A |
Model is Quantized |
N/A |
Model Device |
cuda:0 |
Batch Size |
1 |
Max Length |
512 |
Max Context Length |
480 |
Max Generation Tokens |
32 |
Effective Batch Size |
1.0 |
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard
Metric |
Value |
Average |
50.74 |
ENEM Challenge (No Images) |
37.86 |
BLUEX (No Images) |
34.63 |
OAB Exams |
33.12 |
Assin2 RTE |
86.30 |
Assin2 STS |
54.30 |
FaQuAD NLI |
65.33 |
HateBR Binary |
44.06 |
PT Hate Speech Binary |
55.10 |
tweetSentBR |
45.96 |
📄 License
This model is licensed under the MIT license.