đ Chessgpt-Chat-v1
Chessgpt-Chat-v1 is the sft-tuned model of Chessgpt-Base-v1, aiming to provide high - quality language processing capabilities in the chess domain.
đ Quick Start
Chessgpt-Chat-v1 is the sft-tuned model of Chessgpt-Base-v1.
Also, we are actively working on the development of the next-generation model, ChessGPT-V2. We welcome any contribution, especially on chess related dataset. For related matters, please contact xidong.feng.20@ucl.ac.uk.
⨠Features
- Model Type: It is a Language Model.
- Language: Supports English.
- License: Under the Apache 2.0 license.
- Model Description: A 2.8B parameter pretrained language model in Chess.
đĻ Installation
This requires a GPU with 8GB memory.
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
MIN_TRANSFORMERS_VERSION = '4.25.1'
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
tokenizer = AutoTokenizer.from_pretrained("Waterhorse/chessgpt-chat-v1")
model = AutoModelForCausalLM.from_pretrained("Waterhorse/chessgpt-chat-v1", torch_dtype=torch.float16)
model = model.to('cuda:0')
prompt = "A friendly, helpful chat between some humans.<|endoftext|>Human 0: 1.e4 c5, what is the name of this opening?<|endoftext|>Human 1:"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True,
)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str)
đ Documentation
Uses
Excluded uses are described below.
Direct Use
chessgpt-chat-v1
is mainly for research on large language model, especially for those research about policy learning and language modeling.
Out-of-Scope Use
chessgpt-chat-v1
is a language model trained on chess related data and may not perform well for other use cases beyond chess domain.
Bias, Risks, and Limitations
Just as with any language model, chessgpt-chat-v1 carries inherent limitations that necessitate careful consideration. Specifically, it may occasionally generate responses that are irrelevant or incorrect, particularly when tasked with interpreting complex or ambiguous queries. Additionally, given that its training is rooted in online data, the model may inadvertently reflect and perpetuate common online stereotypes and biases.
Evaluation
Please refer to our paper and code for benchmark results.
Citation Information
@article{feng2023chessgpt,
title={ChessGPT: Bridging Policy Learning and Language Modeling},
author={Feng, Xidong and Luo, Yicheng and Wang, Ziyan and Tang, Hongrui and Yang, Mengyue and Shao, Kun and Mguni, David and Du, Yali and Wang, Jun},
journal={arXiv preprint arXiv:2306.09200},
year={2023}
}
đ License
This project is licensed under the Apache 2.0 license.