Multilingual E5 Large Instruct GGUF
M
Multilingual E5 Large Instruct GGUF
Developed by Impulse2000
Multilingual E5 large instruction model supporting text embedding and classification tasks in multiple languages
Downloads 58
Release Time : 2/8/2025
Model Overview
This model is a multilingual text embedding model based on intfloat/multilingual-e5-large-instruct, supporting text classification, retrieval, and clustering tasks in multiple languages.
Model Features
Multilingual Support
Supports text embedding and classification tasks in over 100 languages
High Performance
Excellent performance in various text classification and retrieval tasks
Instruction Optimization
Optimized for instruction tasks, suitable for text processing scenarios requiring precise control
Model Capabilities
Text embedding
Text classification
Text retrieval
Text clustering
Dual-text mining
Semantic similarity calculation
Use Cases
E-commerce
Product Review Classification
Sentiment analysis and classification of multilingual product reviews
Achieved 96.29% accuracy in the MTEB AmazonPolarityClassification task
Information Retrieval
Document Retrieval
Retrieve relevant information from large-scale document libraries
Achieved map@100 of 49.88 in the MTEB ArguAna retrieval task
Text Analysis
Text Clustering
Automatically cluster similar texts
Achieved v_measure of 46.40 in the MTEB ArxivClusteringP2P task
🚀 multilingual-e5-large-instruct
This is a multilingual model based on intfloat/multilingual-e5-large-instruct
, which has been tested on multiple datasets in the MTEB benchmark with various tasks, showing good performance in different languages and tasks.
📚 Documentation
Tags
- mteb
- sentence-transformers
- transformers
- llama-cpp
Supported Languages
- multilingual
- af, am, ar, as, az, be, bg, bn, br, bs, ca, cs, cy, da, de, el, en, eo, es, et, eu, fa, fi, fr, fy, ga, gd, gl, gu, ha, he, hi, hr, hu, hy, id, is, it, ja, jv, ka, kk, km, kn, ko, ku, ky, la, lo, lt, lv, mg, mk, ml, mn, mr, ms, my, ne, nl, 'no', om, or, pa, pl, ps, pt, ro, ru, sa, sd, si, sk, sl, so, sq, sr, su, sv, sw, ta, te, th, tl, tr, ug, uk, ur, uz, vi, xh, yi, zh
License
The model is released under the MIT license.
Base Model
The base model is intfloat/multilingual-e5-large-instruct
.
Model Index
- Model Name: multilingual-e5-large-instruct
- Results:
- Classification Task:
- MTEB AmazonCounterfactualClassification (en):
- Accuracy: 76.23880597014924
- AP: 39.07351965022687
- F1: 70.04836733862683
- MTEB AmazonCounterfactualClassification (de):
- Accuracy: 66.71306209850107
- AP: 79.01499914759529
- F1: 64.81951817560703
- MTEB AmazonCounterfactualClassification (en - ext):
- Accuracy: 73.85307346326837
- AP: 22.447519885878737
- F1: 61.0162730745633
- MTEB AmazonCounterfactualClassification (ja):
- Accuracy: 76.04925053533191
- AP: 23.44983217128922
- F1: 62.5723230907759
- MTEB AmazonPolarityClassification:
- Accuracy: 96.28742500000001
- AP: 94.8449918887462
- F1: 96.28680923610432
- MTEB AmazonReviewsClassification (en):
- Accuracy: 56.716
- F1: 55.76510398266401
- MTEB AmazonReviewsClassification (de):
- Accuracy: 52.99999999999999
- F1: 52.00829994765178
- MTEB AmazonReviewsClassification (es):
- Accuracy: 48.806000000000004
- F1: 48.082345914983634
- MTEB AmazonReviewsClassification (fr):
- Accuracy: 48.507999999999996
- F1: 47.68752844642045
- MTEB AmazonReviewsClassification (ja):
- Accuracy: 47.709999999999994
- F1: 47.05870376637181
- MTEB AmazonReviewsClassification (zh):
- Accuracy: 44.662000000000006
- F1: 43.42371965372771
- MTEB Banking77Classification:
- Accuracy: 85.73376623376623
- F1: 85.68480707214599
- MTEB EmotionClassification:
- Accuracy: 51.51
- F1: 47.632159862049896
- MTEB AmazonCounterfactualClassification (en):
- Retrieval Task:
- MTEB ArguAna:
- MAP@1: 31.721
- MAP@10: 49.221
- MAP@100: 49.884
- MAP@1000: 49.888
- MAP@3: 44.31
- MAP@5: 47.276
- MRR@1: 32.432
- MRR@10: 49.5
- MRR@100: 50.163000000000004
- MRR@1000: 50.166
- MRR@3: 44.618
- MRR@5: 47.541
- NDCG@1: 31.721
- NDCG@10: 58.384
- NDCG@100: 61.111000000000004
- NDCG@1000: 61.187999999999995
- NDCG@3: 48.386
- NDCG@5: 53.708999999999996
- Precision@1: 31.721
- Precision@10: 8.741
- Precision@100: 0.991
- Precision@1000: 0.1
- Precision@3: 20.057
- Precision@5: 14.609
- Recall@1: 31.721
- Recall@10: 87.411
- Recall@100: 99.075
- Recall@1000: 99.644
- Recall@3: 60.171
- Recall@5: 73.044
- MTEB CQADupstackRetrieval:
- MAP@1: 27.764166666666668
- MAP@10: 37.298166666666674
- MAP@100: 38.530166666666666
- MAP@1000: 38.64416666666667
- MAP@3: 34.484833333333334
- MAP@5: 36.0385
- MRR@1: 32.93558333333333
- MRR@10: 41.589749999999995
- MRR@100: 42.425333333333334
- MRR@1000: 42.476333333333336
- MRR@3: 39.26825
- MRR@5: 40.567083333333336
- NDCG@1: 32.93558333333333
- NDCG@10: 42.706583333333334
- NDCG@100: 47.82483333333333
- NDCG@1000: 49.95733333333334
- NDCG@3: 38.064750000000004
- NDCG@5: 40.18158333333333
- Precision@1: 32.93558333333333
- Precision@10: 7.459833333333334
- Precision@100: 1.1830833333333335
- Precision@1000: 0.15608333333333332
- Precision@3: 17.5235
- Precision@5: 12.349833333333333
- Recall@1: 27.764166666666668
- Recall@10: 54.31775
- Recall@100: 76.74350000000001
- Recall@1000: 91.45208333333332
- Recall@3: 41.23425
- Recall@5: 46.73983333333334
- MTEB ClimateFEVER:
- MAP@1: 12.969
- MAP@10: 21.584999999999997
- MAP@100: 23.3
- MAP@1000: 23.5
- MAP@3: 18.218999999999998
- MAP@5: 19.983
- MRR@1: 29.316
- MRR@10: 40.033
- MRR@100: 40.96
- MRR@1000: 41.001
- MRR@3: 37.123
- MRR@5: 38.757999999999996
- NDCG@1: 29.316
- NDCG@10: 29.858
- NDCG@100: 36.756
- NDCG@1000: 40.245999999999995
- NDCG@3: 24.822
- NDCG@5: 26.565
- Precision@1: 29.316
- Precision@10: 9.186
- Precision@100: 1.6549999999999998
- Precision@1000: 0.22999999999999998
- Precision@3: 18.436
- Precision@5: 13.876
- Recall@1: 12.969
- Recall@10: 35.142
- Recall@100: 59.143
- Recall@1000: 78.594
- Recall@3: 22.604
- Recall@5: 27.883000000000003
- MTEB DBPedia:
- MAP@1: 8.527999999999999
- MAP@10: 17.974999999999998
- MAP@100: 25.665
- MAP@1000: 27.406000000000002
- MAP@3: 13.017999999999999
- MAP@5: 15.137
- MRR@1: 62.5
- MRR@10: 71.891
- MRR@100: 72.294
- MRR@1000: 72.296
- MRR@3: 69.958
- MRR@5: 71.121
- NDCG@1: 50.875
- NDCG@10: 38.36
- NDCG@100: 44.235
- NDCG@1000: 52.154
- NDCG@3: 43.008
- NDCG@5: 40.083999999999996
- Precision@1: 62.5
- Precision@10: 30
- Precision@100: 10.038
- Precision@1000: 2.0869999999999997
- Precision@3: 46.833000000000006
- Precision@5: 38.800000000000004
- Recall@1: 8.527999999999999
- Recall@10: 23.828
- Recall@100: 52.322
- Recall@1000: 77.143
- Recall@3: 14.136000000000001
- Recall@5: 17.761
- MTEB FEVER:
- MAP@1: 60.734
- MAP@10: 72.442
- MAP@100: 72.735
- MAP@1000: 72.75
- MAP@3: 70.41199999999999
- MAP@5: 71.80499999999999
- MRR@1: 65.212
- MRR@10: 76.613
- MRR@100: 76.79899999999999
- MRR@1000: 76.801
- MRR@3: 74.8
- MRR@5: 76.12400000000001
- NDCG@1: 65.212
- NDCG@10: 77.988
- NDCG@100: 79.167
- NDCG@1000: 79.452
- NDCG@3: 74.362
- NDCG@5: 76.666
- Precision@1: 65.212
- Precision@10: 10.003
- Precision@100: 1.077
- Precision@1000: 0.11199999999999999
- Precision@3: 29.518
- Precision@5: 19.016
- Recall@1: 60.734
- Recall@10: 90.824
- Recall@100: 95.71600000000001
- Recall@1000: 97.577
- Recall@3: 81.243
- Recall@5: 86.90299999999999
- MTEB FiQA2018:
- MAP@1: 23.845
- MAP@10: 39.281
- MAP@100: 41.422
- MAP@1000: 41.593
- MAP@3: 34.467
- MAP@5: 37.017
- MRR@1: 47.531
- MRR@10: 56.204
- MRR@100: 56.928999999999995
- MRR@1000: 56.962999999999994
- MRR@3: 54.115
- MRR@5: 55.373000000000005
- NDCG@1: 47.531
- NDCG@10: 47.711999999999996
- NDCG@100: 54.510999999999996
- NDCG@1000: 57.103
- NDCG@3: 44.145
- NDCG@5: 45.032
- Precision@1: 47.531
- Precision@10: 13.194
- Precision@100: 2.045
- Precision@1000: 0.249
- Precision@3: 29.424
- Precision@5: 21.451
- Recall@1: 23.845
- Recall@10: 54.967
- Recall@100: 79.11399999999999
- Recall@1000: 94.56700000000001
- Recall@3: 40.256
- Recall@5: 46.215
- MTEB HotpotQA:
- MAP@1: 37.819
- MAP@10: 60.889
- MAP@100: 61.717999999999996
- MAP@1000: 61.778
- MAP@3: 57.254000000000005
- MAP@5: 59.541
- MRR@1: 75.638
- MRR@10: 82.173
- MRR@100: 82.362
- MRR@1000: 82.37
- MRR@3: 81.089
- MRR@5: 81.827
- NDCG@1: 75.638
- NDCG@10: 69.317
- NDCG@100: 72.221
- NDCG@1000: 73.382
- NDCG@3: 64.14
- NDCG@5: 67.07600000000001
- Precision@1: 75.638
- Precision@10: 14.704999999999998
- Precision@100: 1.698
- Precision@1000: 0.185
- Precision@3: 41.394999999999996
- Precision@5: 27.162999999999997
- MTEB ArguAna:
- Clustering Task:
- MTEB ArxivClusteringP2P:
- V - measure: 46.40419580759799
- MTEB ArxivClusteringS2S:
- V - measure: 40.48593255007969
- MTEB BiorxivClusteringP2P:
- V - measure: 40.935218072113855
- MTEB BiorxivClusteringS2S:
- V - measure: 36.276389017675264
- MTEB ArxivClusteringP2P:
- Reranking Task:
- MTEB AskUbuntuDupQuestions:
- MAP: 63.889179122289995
- MRR: 77.61146286769556
- MTEB AskUbuntuDupQuestions:
- STS Task:
- MTEB BIOSSES:
- Cosine Similarity Pearson: 88.15075203727929
- Cosine Similarity Spearman: 86.9622224570873
- Euclidean Pearson: 86.70473853624121
- Euclidean Spearman: 86.9622224570873
- Manhattan Pearson: 86.21089380980065
- Manhattan Spearman: 86.75318154937008
- MTEB BIOSSES:
- BitextMining Task:
- MTEB BUCC (de - en):
- Accuracy: 99.65553235908142
- F1: 99.60681976339595
- Precision: 99.58246346555325
- Recall: 99.65553235908142
- MTEB BUCC (fr - en):
- Accuracy: 99.26260180497468
- F1: 99.14520507740848
- Precision: 99.08650671362535
- Recall: 99.26260180497468
- MTEB BUCC (ru - en):
- Accuracy: 98.07412538967787
- F1: 97.86629719431936
- Precision: 97.76238309664012
- Recall: 98.07412538967787
- MTEB BUCC (zh - en):
- Accuracy: 99.42074776197998
- F1: 99.38564156573635
- Precision: 99.36808846761454
- Recall: 99.42074776197998
- MTEB BUCC (de - en):
- Classification Task:
Phi 2 GGUF
Other
Phi-2 is a small yet powerful language model developed by Microsoft, featuring 2.7 billion parameters, focusing on efficient inference and high-quality text generation.
Large Language Model Supports Multiple Languages
P
TheBloke
41.5M
205
Roberta Large
MIT
A large English language model pre-trained with masked language modeling objectives, using improved BERT training methods
Large Language Model English
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT is a distilled version of the BERT base model, maintaining similar performance while being more lightweight and efficient, suitable for natural language processing tasks such as sequence classification and token classification.
Large Language Model English
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct is a multilingual large language model optimized for multilingual dialogue use cases, excelling in common industry benchmarks.
Large Language Model English
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa is a multilingual model pretrained on 2.5TB of filtered CommonCrawl data across 100 languages, using masked language modeling as the training objective.
Large Language Model Supports Multiple Languages
X
FacebookAI
9.6M
664
Roberta Base
MIT
An English pre-trained model based on Transformer architecture, trained on massive text through masked language modeling objectives, supporting text feature extraction and downstream task fine-tuning
Large Language Model English
R
FacebookAI
9.3M
488
Opt 125m
Other
OPT is an open pre-trained Transformer language model suite released by Meta AI, with parameter sizes ranging from 125 million to 175 billion, designed to match the performance of the GPT-3 series while promoting open research in large-scale language models.
Large Language Model English
O
facebook
6.3M
198
1
A pretrained model based on the transformers library, suitable for various NLP tasks
Large Language Model
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1 is Meta's multilingual large language model series, featuring 8B, 70B, and 405B parameter scales, supporting 8 languages and code generation, with optimized multilingual dialogue scenarios.
Large Language Model
Transformers Supports Multiple Languages

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
The T5 Base Version is a text-to-text Transformer model developed by Google with 220 million parameters, supporting multilingual NLP tasks.
Large Language Model Supports Multiple Languages
T
google-t5
5.4M
702
Featured Recommended AI Models