🚀 convbert-base-turkish-mc4-cased_allnli_tr
This model is a fine - tuned version of dbmdz/convbert-base-turkish-mc4-cased on the None dataset. It is designed for zero - shot classification tasks and can be used in natural language inference scenarios.
🚀 Quick Start
This model is ready for zero - shot classification tasks. You can use it directly with the appropriate framework and input data.
✨ Features
- Zero - shot Classification: Capable of classifying text into predefined categories without explicit training on those categories.
- NLI Support: Supports natural language inference tasks, which can help in understanding the logical relationships between texts.
📚 Documentation
Model Performance
It achieves the following results on the evaluation set:
- Loss: 0.5541
- Accuracy: 0.8111
Training and Evaluation Data
The model uses the nli_tr
dataset for training and evaluation.
Metrics
The accuracy metric is used to evaluate the model's performance.
Widget Examples
- Example 1:
- Text: "Dolar yükselmeye devam ediyor."
- Candidate Labels: "ekonomi, siyaset, spor"
- Example 2:
- Text: "Senaryo çok saçmaydı, beğendim diyemem."
- Candidate Labels: "olumlu, olumsuz"
🔧 Technical Details
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e - 05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 3
Training Results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
0.7338 |
0.03 |
1000 |
0.6722 |
0.7236 |
0.603 |
0.07 |
2000 |
0.6465 |
0.7399 |
0.5605 |
0.1 |
3000 |
0.5801 |
0.7728 |
0.55 |
0.14 |
4000 |
0.5994 |
0.7626 |
0.529 |
0.17 |
5000 |
0.5720 |
0.7697 |
0.5196 |
0.2 |
6000 |
0.5692 |
0.7769 |
0.5117 |
0.24 |
7000 |
0.5725 |
0.7785 |
0.5044 |
0.27 |
8000 |
0.5532 |
0.7787 |
0.5016 |
0.31 |
9000 |
0.5546 |
0.7812 |
0.5031 |
0.34 |
10000 |
0.5461 |
0.7870 |
0.4949 |
0.37 |
11000 |
0.5725 |
0.7826 |
0.4894 |
0.41 |
12000 |
0.5419 |
0.7933 |
0.4796 |
0.44 |
13000 |
0.5278 |
0.7914 |
0.4795 |
0.48 |
14000 |
0.5193 |
0.7953 |
0.4713 |
0.51 |
15000 |
0.5534 |
0.7771 |
0.4738 |
0.54 |
16000 |
0.5098 |
0.8039 |
0.481 |
0.58 |
17000 |
0.5244 |
0.7958 |
0.4634 |
0.61 |
18000 |
0.5215 |
0.7972 |
0.465 |
0.65 |
19000 |
0.5129 |
0.7985 |
0.4624 |
0.68 |
20000 |
0.5062 |
0.8047 |
0.4597 |
0.71 |
21000 |
0.5114 |
0.8029 |
0.4571 |
0.75 |
22000 |
0.5070 |
0.8073 |
0.4602 |
0.78 |
23000 |
0.5115 |
0.7993 |
0.4552 |
0.82 |
24000 |
0.5085 |
0.8052 |
0.4538 |
0.85 |
25000 |
0.5118 |
0.7974 |
0.4517 |
0.88 |
26000 |
0.5036 |
0.8044 |
0.4517 |
0.92 |
27000 |
0.4930 |
0.8062 |
0.4413 |
0.95 |
28000 |
0.5307 |
0.7964 |
0.4483 |
0.99 |
29000 |
0.5195 |
0.7938 |
0.4036 |
1.02 |
30000 |
0.5238 |
0.8029 |
0.3724 |
1.05 |
31000 |
0.5125 |
0.8082 |
0.3777 |
1.09 |
32000 |
0.5099 |
0.8075 |
0.3753 |
1.12 |
33000 |
0.5172 |
0.8053 |
0.367 |
1.15 |
34000 |
0.5188 |
0.8053 |
0.3819 |
1.19 |
35000 |
0.5218 |
0.8046 |
0.363 |
1.22 |
36000 |
0.5202 |
0.7993 |
0.3794 |
1.26 |
37000 |
0.5240 |
0.8048 |
0.3749 |
1.29 |
38000 |
0.5026 |
0.8054 |
0.367 |
1.32 |
39000 |
0.5198 |
0.8075 |
0.3759 |
1.36 |
40000 |
0.5298 |
0.7993 |
0.3701 |
1.39 |
41000 |
0.5072 |
0.8091 |
0.3742 |
1.43 |
42000 |
0.5071 |
0.8098 |
0.3706 |
1.46 |
43000 |
0.5317 |
0.8037 |
0.3716 |
1.49 |
44000 |
0.5034 |
0.8052 |
0.3717 |
1.53 |
45000 |
0.5258 |
0.8012 |
0.3714 |
1.56 |
46000 |
0.5195 |
0.8050 |
0.3781 |
1.6 |
47000 |
0.5004 |
0.8104 |
0.3725 |
1.63 |
48000 |
0.5124 |
0.8113 |
0.3624 |
1.66 |
49000 |
0.5040 |
0.8094 |
0.3657 |
1.7 |
50000 |
0.4979 |
0.8111 |
0.3669 |
1.73 |
51000 |
0.4968 |
0.8100 |
0.3636 |
1.77 |
52000 |
0.5075 |
0.8079 |
0.36 |
1.8 |
53000 |
0.4985 |
0.8110 |
0.3624 |
1.83 |
54000 |
0.5125 |
0.8070 |
0.366 |
1.87 |
55000 |
0.4918 |
0.8117 |
0.3655 |
1.9 |
56000 |
0.5051 |
0.8109 |
0.3609 |
1.94 |
57000 |
0.5083 |
0.8105 |
0.3672 |
1.97 |
58000 |
0.5129 |
0.8085 |
0.3545 |
2.0 |
59000 |
0.5467 |
0.8109 |
0.2938 |
2.04 |
60000 |
0.5635 |
0.8049 |
0.29 |
2.07 |
61000 |
0.5781 |
0.8041 |
0.2992 |
2.11 |
62000 |
0.5470 |
0.8077 |
0.2957 |
2.14 |
63000 |
0.5765 |
0.8073 |
0.292 |
2.17 |
64000 |
0.5472 |
0.8106 |
0.2893 |
2.21 |
65000 |
0.5590 |
0.8085 |
0.2883 |
2.24 |
66000 |
0.5535 |
0.8064 |
0.2923 |
2.28 |
67000 |
0.5508 |
0.8095 |
0.2868 |
2.31 |
68000 |
0.5679 |
0.8098 |
0.2892 |
2.34 |
69000 |
0.5660 |
0.8057 |
0.292 |
2.38 |
70000 |
0.5494 |
0.8088 |
0.286 |
2.41 |
71000 |
0.5653 |
0.8085 |
0.2939 |
2.45 |
72000 |
0.5673 |
0.8070 |
0.286 |
2.48 |
73000 |
0.5600 |
0.8092 |
0.2844 |
2.51 |
74000 |
0.5508 |
0.8095 |
0.2913 |
2.55 |
75000 |
0.5645 |
0.8088 |
0.2859 |
2.58 |
76000 |
0.5677 |
0.8095 |
0.2892 |
2.62 |
77000 |
0.5598 |
0.8113 |
0.2898 |
2.65 |
78000 |
0.5618 |
0.8096 |
0.2814 |
2.68 |
79000 |
0.5664 |
0.8103 |
0.2917 |
2.72 |
80000 |
0.5484 |
0.8122 |
0.2907 |
2.75 |
81000 |
0.5522 |
0.8116 |
0.2896 |
2.79 |
82000 |
0.5540 |
0.8093 |
0.2907 |
2.82 |
83000 |
0.5469 |
0.8104 |
0.2882 |
2.85 |
84000 |
0.5471 |
0.8122 |
0.2878 |
2.89 |
85000 |
0.5532 |
0.8108 |
0.2858 |
2.92 |
86000 |
0.5511 |
0.8115 |
0.288 |
2.96 |
87000 |
0.5491 |
0.8111 |
0.2834 |
2.99 |
88000 |
0.5541 |
0.8111 |
Framework versions
- Transformers 4.12.3
- Pytorch 1.10.0+cu102
- Datasets 1.15.1
- Tokenizers 0.10.3
📄 License
This model is licensed under the Apache - 2.0 license.