license: mit
model-index:
- name: piccolo-math-2x7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.11
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-math-2x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.27
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-math-2x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-math-2x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 63.86
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-math-2x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.87
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-math-2x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.13
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-math-2x7b
name: Open LLM Leaderboard
Piccolo-math-2x7b
In loving memory of my dog Klaus (Piccolo)
~ Piccolo (Italian): the little one ~

Code Example
Inference and Evaluation colab available here
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
model_id = "macadeliccc/piccolo-math-2x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,load_in_4bit=True)
prompt = "What is the best way to train Cane Corsos?"
print("Response:")
print(generate_response(prompt), "\n")
The model is capable of quality code, math, and logical reasoning. Try whatever questions you think of.
Evaluations
Model |
AGIEval |
GPT4All |
TruthfulQA |
Bigbench |
Average |
piccolo-math-2x7b |
43.89 |
74.98 |
63.96 |
44.99 |
56.96 |
EQ Bench
Benchmark Complete:
- 2024-01-24 00:00:40
- Time taken: 183.3 mins
- Prompt Format: Mistral
- Model: macadeliccc/piccolo-math-2x7b
- Score (v2): 70.74
- Parseable: 167.0
Batch completed
Time taken: 183.3 mins
AGIEval
Task |
Version |
Metric |
Value |
|
Stderr |
agieval_aqua_rat |
0 |
acc |
24.41 |
± |
2.70 |
|
|
acc_norm |
24.80 |
± |
2.72 |
agieval_logiqa_en |
0 |
acc |
35.79 |
± |
1.88 |
|
|
acc_norm |
36.71 |
± |
1.89 |
agieval_lsat_ar |
0 |
acc |
23.48 |
± |
2.80 |
|
|
acc_norm |
23.91 |
± |
2.82 |
agieval_lsat_lr |
0 |
acc |
49.22 |
± |
2.22 |
|
|
acc_norm |
50.00 |
± |
2.22 |
agieval_lsat_rc |
0 |
acc |
63.94 |
± |
2.93 |
|
|
acc_norm |
64.31 |
± |
2.93 |
agieval_sat_en |
0 |
acc |
77.18 |
± |
2.93 |
|
|
acc_norm |
76.70 |
± |
2.95 |
agieval_sat_en_without_passage |
0 |
acc |
45.15 |
± |
3.48 |
|
|
acc_norm |
44.66 |
± |
3.47 |
agieval_sat_math |
0 |
acc |
33.64 |
± |
3.19 |
|
|
acc_norm |
30.00 |
± |
3.10 |
Average: 43.89%
GPT4All
Task |
Version |
Metric |
Value |
|
Stderr |
arc_challenge |
0 |
acc |
61.86 |
± |
1.42 |
|
|
acc_norm |
62.88 |
± |
1.41 |
arc_easy |
0 |
acc |
84.34 |
± |
0.75 |
|
|
acc_norm |
80.47 |
± |
0.81 |
boolq |
1 |
acc |
86.88 |
± |
0.59 |
hellaswag |
0 |
acc |
68.56 |
± |
0.46 |
|
|
acc_norm |
85.16 |
± |
0.35 |
openbookqa |
0 |
acc |
37.00 |
± |
2.16 |
|
|
acc_norm |
47.80 |
± |
2.24 |
piqa |
0 |
acc |
82.21 |
± |
0.89 |
|
|
acc_norm |
83.68 |
± |
0.86 |
winogrande |
0 |
acc |
77.98 |
± |
1.16 |
Average: 74.98%
TruthfulQA
Task |
Version |
Metric |
Value |
|
Stderr |
truthfulqa_mc |
1 |
mc1 |
47.37 |
± |
1.75 |
|
|
mc2 |
63.96 |
± |
1.57 |
Average: 63.96%
Bigbench
Task |
Version |
Metric |
Value |
|
Stderr |
bigbench_causal_judgement |
0 |
multiple_choice_grade |
55.26 |
± |
3.62 |
bigbench_date_understanding |
0 |
multiple_choice_grade |
63.14 |
± |
2.51 |
bigbench_disambiguation_qa |
0 |
multiple_choice_grade |
42.64 |
± |
3.08 |
bigbench_geometric_shapes |
0 |
multiple_choice_grade |
22.84 |
± |
2.22 |
|
|
exact_str_match |
3.34 |
± |
0.95 |
bigbench_logical_deduction_five_objects |
0 |
multiple_choice_grade |
36.60 |
± |
2.16 |
bigbench_logical_deduction_seven_objects |
0 |
multiple_choice_grade |
25.57 |
± |
1.65 |
bigbench_logical_deduction_three_objects |
0 |
multiple_choice_grade |
56.00 |
± |
2.87 |
bigbench_movie_recommendation |
0 |
multiple_choice_grade |
42.40 |
± |
2.21 |
bigbench_navigate |
0 |
multiple_choice_grade |
54.70 |
± |
1.57 |
bigbench_reasoning_about_colored_objects |
0 |
multiple_choice_grade |
62.90 |
± |
1.08 |
bigbench_ruin_names |
0 |
multiple_choice_grade |
53.35 |
± |
2.36 |
bigbench_salient_translation_error_detection |
0 |
multiple_choice_grade |
24.35 |
± |
1.36 |
bigbench_snarks |
0 |
multiple_choice_grade |
62.43 |
± |
3.61 |
bigbench_sports_understanding |
0 |
multiple_choice_grade |
70.28 |
± |
1.46 |
bigbench_temporal_sequences |
0 |
multiple_choice_grade |
41.30 |
± |
1.56 |
bigbench_tracking_shuffled_objects_five_objects |
0 |
multiple_choice_grade |
22.32 |
± |
1.18 |
bigbench_tracking_shuffled_objects_seven_objects |
0 |
multiple_choice_grade |
17.77 |
± |
0.91 |
bigbench_tracking_shuffled_objects_three_objects |
0 |
multiple_choice_grade |
56.00 |
± |
2.87 |
Average: 44.99%
Average score: 56.96%
Elapsed time: 01:51:53
Detailed results can be found here
Metric |
Value |
Avg. |
72.32 |
AI2 Reasoning Challenge (25-Shot) |
69.11 |
HellaSwag (10-Shot) |
87.27 |
MMLU (5-Shot) |
63.69 |
TruthfulQA (0-shot) |
63.86 |
Winogrande (5-shot) |
79.87 |
GSM8k (5-shot) |
70.13 |