Model Overview
Model Features
Model Capabilities
Use Cases
đ OpenELM
OpenELM is a family of efficient language models. It uses a layer - wise scaling strategy to enhance accuracy and provides models with different parameter sizes. The complete framework and pre - trained models are released for open research.
đ Quick Start
We introduce OpenELM, a family of Open Efficient Language Models. OpenELM uses a layer - wise scaling strategy to efficiently allocate parameters within each layer of the transformer model, leading to enhanced accuracy. We pretrained OpenELM models using the CoreNet library. We release both pretrained and instruction - tuned models with 270M, 450M, 1.1B and 3B parameters. We release the complete framework, encompassing data preparation, training, fine - tuning, and evaluation procedures, alongside multiple pre - trained checkpoints and training logs, to facilitate open research.
Our pre - training dataset contains RefinedWeb, deduplicated PILE, a subset of RedPajama, and a subset of Dolma v1.6, totaling approximately 1.8 trillion tokens. Please check license agreements and terms of these datasets before using them.
⨠Features
- Layer - wise Scaling Strategy: Efficiently allocates parameters within each layer of the transformer model, enhancing accuracy.
- Multiple Model Sizes: Releases models with 270M, 450M, 1.1B, and 3B parameters, both pretrained and instruction - tuned.
- Complete Framework: Provides a complete framework including data preparation, training, fine - tuning, and evaluation procedures.
đģ Usage Examples
Basic Usage
We have provided an example function to generate output from OpenELM models loaded via HuggingFace Hub in generate_openelm.py
.
You can try the model by running the following command:
python generate_openelm.py --model apple/OpenELM-3B --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2
Please refer to [this link](https://huggingface.co/docs/hub/security - tokens) to obtain your hugging face access token.
Advanced Usage
Additional arguments to the hugging face generate function can be passed via generate_kwargs
. As an example, to speedup the inference, you can try lookup token speculative generation by passing the prompt_lookup_num_tokens
argument as follows:
python generate_openelm.py --model apple/OpenELM-3B --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 prompt_lookup_num_tokens=10
Alternatively, try model - wise speculative generation with an [assistive model](https://huggingface.co/blog/assisted - generation) by passing a smaller model through the assistant_model
argument, for example:
python generate_openelm.py --model apple/OpenELM-3B --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 --assistant_model [SMALLER_MODEL]
đ Documentation
Main Results
Zero - Shot
Property | Details |
---|---|
Model Type | Various sizes of OpenELM models, including OpenELM - 270M, OpenELM - 270M - Instruct, OpenELM - 450M, etc. |
Training Data | RefinedWeb, deduplicated PILE, a subset of RedPajama, and a subset of Dolma v1.6 |
Model Size | ARC - c | ARC - e | BoolQ | HellaSwag | PIQA | SciQ | WinoGrande | Average |
---|---|---|---|---|---|---|---|---|
[OpenELM - 270M](https://huggingface.co/apple/OpenELM - 270M) | 26.45 | 45.08 | 53.98 | 46.71 | 69.75 | 84.70 | 53.91 | 54.37 |
[OpenELM - 270M - Instruct](https://huggingface.co/apple/OpenELM - 270M - Instruct) | 30.55 | 46.68 | 48.56 | 52.07 | 70.78 | 84.40 | 52.72 | 55.11 |
[OpenELM - 450M](https://huggingface.co/apple/OpenELM - 450M) | 27.56 | 48.06 | 55.78 | 53.97 | 72.31 | 87.20 | 58.01 | 57.56 |
[OpenELM - 450M - Instruct](https://huggingface.co/apple/OpenELM - 450M - Instruct) | 30.38 | 50.00 | 60.37 | 59.34 | 72.63 | 88.00 | 58.96 | 59.95 |
[OpenELM - 1_1B](https://huggingface.co/apple/OpenELM - 1_1B) | 32.34 | 55.43 | 63.58 | 64.81 | 75.57 | 90.60 | 61.72 | 63.44 |
[OpenELM - 1_1B - Instruct](https://huggingface.co/apple/OpenELM - 1_1B - Instruct) | 37.97 | 52.23 | 70.00 | 71.20 | 75.03 | 89.30 | 62.75 | 65.50 |
[OpenELM - 3B](https://huggingface.co/apple/OpenELM - 3B) | 35.58 | 59.89 | 67.40 | 72.44 | 78.24 | 92.70 | 65.51 | 67.39 |
[OpenELM - 3B - Instruct](https://huggingface.co/apple/OpenELM - 3B - Instruct) | 39.42 | 61.74 | 68.17 | 76.36 | 79.00 | 92.50 | 66.85 | 69.15 |
LLM360
Model Size | ARC - c | HellaSwag | MMLU | TruthfulQA | WinoGrande | Average |
---|---|---|---|---|---|---|
[OpenELM - 270M](https://huggingface.co/apple/OpenELM - 270M) | 27.65 | 47.15 | 25.72 | 39.24 | 53.83 | 38.72 |
[OpenELM - 270M - Instruct](https://huggingface.co/apple/OpenELM - 270M - Instruct) | 32.51 | 51.58 | 26.70 | 38.72 | 53.20 | 40.54 |
[OpenELM - 450M](https://huggingface.co/apple/OpenELM - 450M) | 30.20 | 53.86 | 26.01 | 40.18 | 57.22 | 41.50 |
[OpenELM - 450M - Instruct](https://huggingface.co/apple/OpenELM - 450M - Instruct) | 33.53 | 59.31 | 25.41 | 40.48 | 58.33 | 43.41 |
[OpenELM - 1_1B](https://huggingface.co/apple/OpenELM - 1_1B) | 36.69 | 65.71 | 27.05 | 36.98 | 63.22 | 45.93 |
[OpenELM - 1_1B - Instruct](https://huggingface.co/apple/OpenELM - 1_1B - Instruct) | 41.55 | 71.83 | 25.65 | 45.95 | 64.72 | 49.94 |
[OpenELM - 3B](https://huggingface.co/apple/OpenELM - 3B) | 42.24 | 73.28 | 26.76 | 34.98 | 67.25 | 48.90 |
[OpenELM - 3B - Instruct](https://huggingface.co/apple/OpenELM - 3B - Instruct) | 47.70 | 76.87 | 24.80 | 38.76 | 67.96 | 51.22 |
OpenLLM Leaderboard
Model Size | ARC - c | CrowS - Pairs | HellaSwag | MMLU | PIQA | RACE | TruthfulQA | WinoGrande | Average |
---|---|---|---|---|---|---|---|---|---|
[OpenELM - 270M](https://huggingface.co/apple/OpenELM - 270M) | 27.65 | 66.79 | 47.15 | 25.72 | 69.75 | 30.91 | 39.24 | 53.83 | 45.13 |
[OpenELM - 270M - Instruct](https://huggingface.co/apple/OpenELM - 270M - Instruct) | 32.51 | 66.01 | 51.58 | 26.70 | 70.78 | 33.78 | 38.72 | 53.20 | 46.66 |
[OpenELM - 450M](https://huggingface.co/apple/OpenELM - 450M) | 30.20 | 68.63 | 53.86 | 26.01 | 72.31 | 33.11 | 40.18 | 57.22 | 47.69 |
[OpenELM - 450M - Instruct](https://huggingface.co/apple/OpenELM - 450M - Instruct) | 33.53 | 67.44 | 59.31 | 25.41 | 72.63 | 36.84 | 40.48 | 58.33 | 49.25 |
[OpenELM - 1_1B](https://huggingface.co/apple/OpenELM - 1_1B) | 36.69 | 71.74 | 65.71 | 27.05 | 75.57 | 36.46 | 36.98 | 63.22 | 51.68 |
[OpenELM - 1_1B - Instruct](https://huggingface.co/apple/OpenELM - 1_1B - Instruct) | 41.55 | 71.02 | 71.83 | 25.65 | 75.03 | 39.43 | 45.95 | 64.72 | 54.40 |
[OpenELM - 3B](https://huggingface.co/apple/OpenELM - 3B) | 42.24 | 73.29 | 73.28 | 26.76 | 78.24 | 38.76 | 34.98 | 67.25 | 54.35 |
[OpenELM - 3B - Instruct](https://huggingface.co/apple/OpenELM - 3B - Instruct) | 47.70 | 72.33 | 76.87 | 24.80 | 79.00 | 38.47 | 38.76 | 67.96 | 55.73 |
See the technical report for more results and comparison.
Evaluation
Setup
Install the following dependencies:
# install public lm - eval - harness
harness_repo="public-lm-eval-harness"
git clone https://github.com/EleutherAI/lm-evaluation-harness ${harness_repo}
cd ${harness_repo}
# use main branch on 03 - 15 - 2024, SHA is dc90fec
git checkout dc90fec
pip install -e .
cd ..
# 66d6242 is the main branch on 2024 - 04 - 01
pip install datasets@git+https://github.com/huggingface/datasets.git@66d6242
pip install tokenizers>=0.15.2 transformers>=4.38.2 sentencepiece>=0.2.0
Evaluate OpenELM
# OpenELM - 3B
hf_model=apple/OpenELM-3B
# this flag is needed because lm - eval - harness set add_bos_token to False by default, but OpenELM uses LLaMA tokenizer which requires add_bos_token to be True
tokenizer=meta-llama/Llama-2-7b-hf
add_bos_token=True
batch_size=1
mkdir lm_eval_output
shot=0
task=arc_challenge,arc_easy,boolq,hellaswag,piqa,race,winogrande,sciq,truthfulqa_mc2
lm_eval --model hf \
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token},tokenizer=${tokenizer} \
--tasks ${task} \
--device cuda:0 \
--num_fewshot ${shot} \
--output_path ./lm_eval_output/${hf_model//\//_}_${task//,/_}-${shot}shot \
--batch_size ${batch_size} 2>&1 | tee ./lm_eval_output/eval-${hf_model//\//_}_${task//,/_}-${shot}shot.log
shot=5
task=mmlu,winogrande
lm_eval --model hf \
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token},tokenizer=${tokenizer} \
--tasks ${task} \
--device cuda:0 \
--num_fewshot ${shot} \
--output_path ./lm_eval_output/${hf_model//\//_}_${task//,/_}-${shot}shot \
--batch_size ${batch_size} 2>&1 | tee ./lm_eval_output/eval-${hf_model//\//_}_${task//,/_}-${shot}shot.log
shot=25
task=arc_challenge,crows_pairs_english
lm_eval --model hf \
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token},tokenizer=${tokenizer} \
--tasks ${task} \
--device cuda:0 \
--num_fewshot ${shot} \
--output_path ./lm_eval_output/${hf_model//\//_}_${task//,/_}-${shot}shot \
--batch_size ${batch_size} 2>&1 | tee ./lm_eval_output/eval-${hf_model//\//_}_${task//,/_}-${shot}shot.log
shot=10
task=hellaswag
lm_eval --model hf \
--model_args pretrained=${hf_model},trust_remote_code=True,add_bos_token=${add_bos_token},tokenizer=${tokenizer} \
--tasks ${task} \
--device cuda:0 \
--num_fewshot ${shot} \
--output_path ./lm_eval_output/${hf_model//\//_}_${task//,/_}-${shot}shot \
--batch_size ${batch_size} 2>&1 | tee ./lm_eval_output/eval-${hf_model//\//_}_${task//,/_}-${shot}shot.log
đ§ Technical Details
- Layer - wise Scaling Strategy: OpenELM uses a layer - wise scaling strategy to efficiently allocate parameters within each layer of the transformer model. This strategy helps in enhancing the accuracy of the model.
- Pre - training Dataset: The pre - training dataset contains RefinedWeb, deduplicated PILE, a subset of RedPajama, and a subset of Dolma v1.6, totaling approximately 1.8 trillion tokens.
đ License
The project uses the apple - amlr
license, also known as the apple - sample - code - license
. For more details, please refer to LICENSE.
â ī¸ Important Note
The release of OpenELM models aims to empower and enrich the open research community by providing access to state - of - the - art language models. Trained on publicly available datasets, these models are made available without any safety guarantees. Consequently, there exists the possibility of these models producing outputs that are inaccurate, harmful, biased, or objectionable in response to user prompts. Thus, it is imperative for users and developers to undertake thorough safety testing and implement appropriate filtering mechanisms tailored to their specific requirements.
đĄ Usage Tip
- When using the model, make sure to obtain the correct hugging face access token as described in the usage example.
- For evaluation, carefully follow the setup steps to install the necessary dependencies.
Citation
If you find our work useful, please cite:
@article{mehtaOpenELMEfficientLanguage2024,
title = {{OpenELM}: {An} {Efficient} {Language} {Model} {Family} with {Open} {Training} and {Inference} {Framework}},
shorttitle = {{OpenELM}},
url = {https://arxiv.org/abs/2404.14619v1},
language = {en},
urldate = {2024-04-24},
journal = {arXiv.org},
author = {Mehta, Sachin and Sekhavat, Mohammad Hossein and Cao, Qingqing and Horton, Maxwell and Jin, Yanzi and Sun, Chenfan and Mirzadeh, Iman and Najibi, Mahyar and Belenko, Dmitry and Zatloukal, Peter and Rastegari, Mohammad},
month = apr,
year = {2024},
}
@inproceedings{mehta2022cvnets,
author = {Mehta, Sachin and Abdolhosseini, Farzad and Rastegari, Mohammad},
title = {CVNets: High Performance Library for Computer Vision},
year = {2022},
booktitle = {Proceedings of the 30th ACM International Conference on Multimedia},
series = {MM '22}
}

