🚀 Orbita-v0.1
Orbita-v0.1 is a Turkish Large Language Model with multiple abilities across different dimensions in the Turkish language, covering various tasks such as coding, math, etc.
🚀 Quick Start
This model is an extended version of a Qwen - based Large Language Model (LLM) for Turkish. It was trained on a cleaned Turkish dataset carefully annotated to execute Turkish instructions accurately and systematically. The model was fully finetuned extensively on 8x H100 GPUs for 2 days using a meticulously annotated Turkish dataset.
✨ Features
- Multifaceted Abilities: Capable of handling a wide range of tasks in Turkish, including coding, math, and more.
- Based on Qwen: An extended version of a Qwen - based LLM, leveraging the power of the Qwen architecture.
- Accurate Instruction Execution: Trained on a carefully annotated Turkish dataset to execute Turkish instructions precisely.
📦 Installation
No specific installation steps are provided in the original document.
💻 Usage Examples
Basic Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
model = AutoModelForCausalLM.from_pretrained(
"Orbina/Orbita-v0.1",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Orbina/Orbita-v0.1")
prompt = "Python'da ekrana 'Merhaba Dünya' nasıl yazılır?"
messages = [
{"role": "system", "content": "Sen, Orbina AI tarafından üretilen ve verilen talimatları takip ederek en iyi cevabı üretmeye çalışan yardımcı bir yapay zekasın."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
temperature=0.3,
top_k=50,
top_p=0.9,
max_new_tokens=512,
repetition_penalty=1,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
Advanced Usage
The advanced usage is demonstrated through the example generations.
📚 Documentation
Example Generations
Prompt:
Türkiye'deki finansal kurumlar, yapay zeka ile birlikte gelen veri güvenliği risklerini nasıl yönetiyor, 3 örnek verir misin?
Cevap:
Türkiye'deki finansal kurumlar, yapay zeka (AI) teknolojilerinin getirdiği veri güvenliği riskleri çeşitli yöntemlerle ele almakta ve bu riskleri azaltmaya çalışmaktadır. İşte üç örnek:
1. **Veri Şifreleme:** Finansal kuruluşlar, müşteri bilgileri gibi hassas verileri şifrelemeyi kullanarak veri ihlallerine karşı koruma sağlar. AES (Advanced Encryption Standard), RSA (Rivest-Shamir-Adleman) veya ECC (Elliptik Eğri Kriptografisi) gibi güçlü şifreleme algoritmaları, verilerin okunmasını engelleyebilir.
2. **Anomali Tespit Sistemleri:** Yapay zeka destekli anomali tespit sistemleri, beklenmedik davranışları algılayabilir ve güvenlik ekiplerini uyarır. Bu sistemler, makine öğrenimi modelleri sayesinde zaman içinde daha etkili hale gelebilir ve dolandırıcılık faaliyetlerini önlemede önemli rol oynar.
3. **Sürekli İzleme ve Güvenlik Politikası Uygulama:** Türkiye'deki finansal kurumlar, sürekli izleme ve güvenlik politikalarını uygularak veri güvenliğini sürdürür. Bu süreçlerde düzenli güvenlik denetimleri yapılır ve tüm personelin güvenlik konusunda eğitildiği göz önünde bulundurulur. Ayrıca, müşterilere de güvenlik protokollerini anlatan eğitimler sunulur.
Bu örnekler, Türkiye'deki finansal kurumların yapay zeka ile ilgili veri güvenliği risklerini yönetmek için kullandıkları bazı stratejileri göstermektedir. Ancak herhangi bir güvenlik sistemi mükemmel değildir ve bu nedenle kurumlar da sürekli olarak güvenlik durumlarını değerlendirip iyileştirmeler yapmaktadırlar.
Prompt:
Python'da ekrana "Merhaba Dünya" nasıl yazılır?
Cevap:
Python'da ekrana "Merhaba Dünya" yazmak için `print` fonksiyonunu kullanabilirsiniz. İşte basit bir örnek:
``python
print("Merhaba Dünya")
``
Bu kodu çalıştırdığınızda, konsol ekranında "Merhaba Dünya" metnini göreceksiniz. `print` fonksiyonu, verilen argümanı (bu durumda "Merhaba Dünya") alır ve onu çıktı olarak verir.
Model Evaluation Results
Open LLM Turkish Leaderboard Evaluation Results
Property |
Details |
Avg. |
49.47 |
AI2 Reasoning Challenge_tr |
41.97 |
HellaSwag_tr |
48.00 |
MMLU_tr |
49.51 |
TruthfulQA_tr |
50.78 |
Winogrande _tr |
56.16 |
GSM8k_tr |
50.41 |
🔧 Technical Details
- Base Model: Qwen 14B based LLM
- Training Dataset: Annotated Turkish Dataset
- Training Method: Full Finetuning
📄 License
This model is licensed under the Apache - 2.0 license.