🚀 Dorna-Llama3-8B-Instruct-Quantized4Bit
This project provides a 4-bit quantized version of the Dorna-Llama3-8B-Instruct model, aiming to optimize memory usage. The Dorna model, a decoder-only architecture, is specifically fine - tuned on Persian data. It also integrates Flash Attention 2 for accelerated inference.
🚀 Quick Start
You can run conversational inference using the Transformers Auto classes with the generate()
function. Here is an example:
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
model_path = "amirMohammadi/Dorna-Llama3-8B-Instruct-Quantized4Bit"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system",
"content": "You are a helpful Persian assistant. Please answer questions in the asked language."},
{"role": "user", "content": "اصفهان بزرگ تر است یا قم؟"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
✨ Features
- Reduced Memory Usage: 4-bit quantization lowers memory requirements.
- Faster Inference: Flash Attention 2 speeds up processing.
- Easy Deployment: No need for additional libraries like LlamaCPP or Candle.
- Ready to Use: Compatible with Langchain, Haystack, LlamaIndex 2, and more.
- Google Colab Friendly: Can run on Google Colab free tier with T4 GPU (less than 15 GB of GPU RAM).
📚 Documentation
Evaluation of Non - Quantized version
This model is evaluated on questions across various tasks, including Boolean Questions, Code Generation, Long Response, Math, News QA, Paraphrasing, General Knowledge, and Summarization. Most categories typically have two main difficulty levels: Hard and Easy.
Both human evaluation and automatic evaluation (with GPT - 4 as the judge) are performed. In both tables, Dorna - 8B - it is used as an abbreviated form of Dorna - Llama3 - 8B - Instruct.
Overall human evaluation results
Model Pairs |
Parameters |
Win % |
Lose % |
Tie % |
Dorna - 8B - it vs. Meta - Llama - 3 - 8B - Instruct |
8B |
36.94 |
17.39 |
45.67 |
Dorna - 8B - it vs. GPT 3.5 turbo - 1106 |
N.A. |
32.01 |
26.94 |
41.05 |
Dorna - 8B - it vs. Persian Mind |
7B |
55.77 |
10.49 |
33.74 |
Category - based human evaluation results
Win/Lose/Tie % is reported for each category.
Model Pairs |
Parameters |
Bool Complex |
Bool Easy |
Code Gen |
General Long Response |
Historical Long Response |
Math Complex |
Math Easy |
News QA Complex |
News QA Easy |
Paraphrasing |
General Knowledge Easy |
General Knowledge Hard |
Summarization |
Dorna - 8B - it vs. Meta - Llama - 3 - 8B - Instruct |
8B |
0.25/0.25/0.5 |
0.28/0.35/0.38 |
0.6/0.1/0.3 |
0.8/0.08/0.12 |
0.4/0.3/0.3 |
0.28/0.08/0.65 |
0.47/0.00/0.53 |
0.55/0.07/0.38 |
0.43/0.15/0.42 |
0.1/0.05/0.85 |
0.31/0.2/0.49 |
0.59/0.13/0.28 |
0.28/0.2/0.53 |
Dorna - 8B - it vs. GPT 3.5 turbo - 1106 |
N.A. |
0.35/0.35/0.3 |
0.3/0.3/0.4 |
0.1/0.3/.06 |
0.2/0.45/0.35 |
0.46/0.27/0.27 |
0.25/0.1/0.65 |
0.05/0.1/0.85 |
0.12/0.35/0.53 |
0.15/0.1/0.75 |
0.25/0.15/0.6 |
0.3/0.32/0.38 |
0.22/0.53/0.25 |
0.35/0.55/0.1 |
Dorna - 8B - it vs. Persian Mind |
7B |
0.47/0.25/0.28 |
0.57/0.15/0.28 |
0.9/0.1/0.0 |
0.82/0.08/0.1 |
0.4/0.17/0.42 |
0.3/0.0/0.7 |
0.22/0.08/0.7 |
0.72/0.07/0.2 |
0.7/0.0/0.3 |
0.7/0.05/0.25 |
0.51/0.12/0.37 |
0.61/0.1/0.29 |
0.93/0.0/0.07 |
Automatic evaluation results
Model Pairs |
Parameters |
Overall Win Rate % |
Easy Win Rate % |
Hard Win Rate % |
Dorna - 8B - it vs. Llama 3 base |
8B |
58.96 |
56.00 |
64.49 |
Dorna - 8B - it vs. Part Mistral |
7B |
77.20 |
73.00 |
85.05 |
Dorna - 8B - it vs. Persian Mind |
7B |
90.88 |
87.50 |
97.20 |
Dorna - 8B - it vs. Neuraorca Gemma 7b |
7B |
86.32 |
86.50 |
85.98 |
Dorna - 8B - it vs. Maral 7b |
7B |
97.39 |
97.00 |
98.13 |
Dorna - 8B - it vs. PersianLlama 7b |
7B |
98.70 |
98.00 |
100.00 |
Dorna - 8B - it vs. Aya - 23 - 8B |
8B |
52.77 |
56.50 |
45.79 |
Dorna - 8B - it vs. Aya - 23 - 35B |
35B |
45.93 |
54.00 |
30.84 |
Dorna - 8B - it vs. Command R |
35B |
58.63 |
61.00 |
54.21 |
📄 License
This model is under the llama3 license.
📞 Contact us
If you have any questions regarding this model, you can reach us via the community on Hugging Face.