đ distilhubert-finetuned-babycry-v7
This model, distilhubert-finetuned-babycry-v7
, is a fine - tuned version of [ntu - spml/distilhubert](https://huggingface.co/ntu - spml/distilhubert) on an unknown dataset. It offers high - performance results in relevant evaluations, which can be useful for tasks such as baby cry classification.
đ Quick Start
This section provides a high - level overview of the model. For more detailed usage, please refer to the official documentation of the transformers
library.
⨠Features
- Fine - tuned Model: Based on [ntu - spml/distilhubert](https://huggingface.co/ntu - spml/distilhubert), it has been fine - tuned to better adapt to specific tasks.
- Multiple Evaluation Metrics: Achieves good results in multiple evaluation metrics, including accuracy, F1, precision, and recall.
đ Documentation
Model Performance
This model achieves the following results on the evaluation set:
- Loss: 0.5864
- Accuracy: {'accuracy': 0.8695652173913043}
- F1: 0.8089
- Precision: 0.7561
- Recall: 0.8696
Training Procedure
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 8
Training Results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
F1 |
Precision |
Recall |
0.7417 |
0.5435 |
25 |
0.5925 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
0.7226 |
1.0870 |
50 |
0.6167 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
0.5606 |
1.6304 |
75 |
0.6808 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
0.8858 |
2.1739 |
100 |
0.5850 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
0.6573 |
2.7174 |
125 |
0.5968 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
0.7942 |
3.2609 |
150 |
0.6142 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
0.7497 |
3.8043 |
175 |
0.5915 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
0.7408 |
4.3478 |
200 |
0.5899 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
0.6499 |
4.8913 |
225 |
0.5989 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
0.6725 |
5.4348 |
250 |
0.5865 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
0.6797 |
5.9783 |
275 |
0.5852 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
0.6553 |
6.5217 |
300 |
0.5861 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
0.6535 |
7.0652 |
325 |
0.5863 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
0.7297 |
7.6087 |
350 |
0.5865 |
{'accuracy': 0.8695652173913043} |
0.8089 |
0.7561 |
0.8696 |
Framework Versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Tokenizers 0.19.1
đ License
This project is licensed under the Apache - 2.0 license.