đ Wav2Vec2-Large for Intent Classification
This model is designed for intent classification using speech data, leveraging the power of Wav2Vec2.
đ Quick Start
This model is a ported version for intent classification. To use it, ensure your speech input is sampled at 16kHz as the base model is pretrained on 16kHz sampled speech audio.
⨠Features
đ Documentation
Model description
This is a ported version of S3PRL's Wav2Vec2 for the SUPERB Intent Classification task.
The base model is wav2vec2-large-lv60, which is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
For more information refer to SUPERB: Speech processing Universal PERformance Benchmark
Task and dataset description
Intent Classification (IC) classifies utterances into predefined classes to determine the intent of speakers. SUPERB uses the
Fluent Speech Commands
dataset, where each utterance is tagged with three intent labels: action, object, and location.
For the original model's training and evaluation instructions refer to the
S3PRL downstream task README.
đģ Usage Examples
Basic Usage
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
def map_to_array(example):
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
example["speech"] = speech
return example
dataset = load_dataset("anton-l/superb_demo", "ic", split="test")
dataset = dataset.map(map_to_array)
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-large-superb-ic")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-large-superb-ic")
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
action_ids = torch.argmax(logits[:, :6], dim=-1).tolist()
action_labels = [model.config.id2label[_id] for _id in action_ids]
object_ids = torch.argmax(logits[:, 6:20], dim=-1).tolist()
object_labels = [model.config.id2label[_id + 6] for _id in object_ids]
location_ids = torch.argmax(logits[:, 20:24], dim=-1).tolist()
location_labels = [model.config.id2label[_id + 20] for _id in location_ids]
đ License
This model is licensed under the apache-2.0 license.
đ Eval results
The evaluation metric is accuracy.
|
s3prl |
transformers |
test |
0.9528 |
N/A |
BibTeX entry and citation info
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}