🚀 XLS-R Wav2Vec2 For Russian Speech Emotion Classification
This model is designed for Russian speech emotion classification, leveraging the XLS - R Wav2Vec2 architecture to accurately recognize emotions in audio.
✨ Features
- Tags: audio - classification, audio, emotion, emotion - recognition, emotion - classification, speech
- License: MIT
- Datasets: Aniemore/resd
📦 Installation
The installation steps are not explicitly provided in the original document. However, you need to have the necessary libraries installed such as torch
, torchaudio
, transformers
, librosa
, etc. You can install them using pip
:
pip install torch torchaudio transformers librosa numpy
💻 Usage Examples
Basic Usage
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, AutoModel, Wav2Vec2FeatureExtractor
import librosa
import numpy as np
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model_(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
Advanced Usage
TRUST = True
config = AutoConfig.from_pretrained('Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition', trust_remote_code=TRUST)
model_ = AutoModel.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition", trust_remote_code=TRUST)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_.to(device)
result = predict("/path/to/russian_audio_speech.wav", 16000)
print(result)
[{'Emotion': 'anger', 'Score': '0.0%'},
{'Emotion': 'disgust', 'Score': '100.0%'},
{'Emotion': 'enthusiasm', 'Score': '0.0%'},
{'Emotion': 'fear', 'Score': '0.0%'},
{'Emotion': 'happiness', 'Score': '0.0%'},
{'Emotion': 'neutral', 'Score': '0.0%'},
{'Emotion': 'sadness', 'Score': '0.0%'}]
📚 Documentation
Model Index
- Name: XLS - R Wav2Vec2 For Russian Speech Emotion Classification by Nikita Davidchuk
- Results:
- Task:
- Name: Audio Emotion Recognition
- Type: audio - emotion - recognition
- Dataset:
- Name: Russian Emotional Speech Dialogs
- Type: Aniemore/resd
- Args: ru
- Metrics:
- Name: accuracy
- Type: accuracy
- Value: 72%
Performance Metrics
Property |
anger |
disgust |
enthusiasm |
fear |
happiness |
neutral |
sadness |
accuracy |
macro avg |
weighted avg |
precision |
0.97 |
0.71 |
0.51 |
0.80 |
0.66 |
0.81 |
0.79 |
|
0.75 |
0.75 |
recall |
0.86 |
0.78 |
0.80 |
0.62 |
0.70 |
0.66 |
0.59 |
|
0.72 |
0.72 |
f1 - score |
0.92 |
0.74 |
0.62 |
0.70 |
0.68 |
0.72 |
0.68 |
0.72 |
0.72 |
0.73 |
support |
44 |
37 |
40 |
45 |
44 |
38 |
32 |
280 |
280 |
280 |
📄 License
This project is licensed under the MIT license.
📖 Citations
@misc{Aniemore,
author = {Артем Аментес, Илья Лубенец, Никита Давидчук},
title = {Открытая библиотека искусственного интеллекта для анализа и выявления эмоциональных оттенков речи человека},
year = {2022},
publisher = {Hugging Face},
journal = {Hugging Face Hub},
howpublished = {\url{https://huggingface.com/aniemore/Aniemore}},
email = {hello@socialcode.ru}
}